
The Journal of Systems and Software 118 (2016) 234–250

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Evaluating refactorings for spreadsheet models

Jácome Cunha

a , João Paulo Fernandes b , Pedro Martins c , Jorge Mendes c , Rui Pereira

c , ∗,
João Saraiva

c

a NOVA LINCS, DI, FCT, Universidade Nova de Lisboa, Portugal
b LISP - RELEASE, Universidade da Beira Interior & HASLab/INESC TEC, Portugal
c Universidade do Minho & HASLab/INESC TEC, Portugal

a r t i c l e i n f o

Article history:

Received 1 June 2015

Revised 18 December 2015

Accepted 18 April 2016

Available online 3 May 2016

Keywords:

Software refactoring

Model-driven engineering

Spreadsheets

Empirical study,

a b s t r a c t

Software refactoring is a well-known technique that provides transformations on software artifacts with

the aim of improving their overall quality.

We have previously proposed a catalog of refactorings for spreadsheet models expressed in the

ClassSheets modeling language, which allows us to specify the business logic of a spreadsheet in an

object-oriented fashion.

Reasoning about spreadsheets at the model level enhances a model-driven spreadsheet environment

where a ClassSheet model and its conforming instance (spreadsheet data) automatically co-evolves af-

ter applying a refactoring at the model level. Research motivation was to improve the model and its

conforming instance: the spreadsheet data.

In this paper we define such refactorings using previously proposed evolution steps for models and in-

stances.

We also present an empirical study we designed and conducted in order to confirm our original intuition

that these refactorings have a positive impact on end-user productivity, both in terms of effectiveness

and efficiency.

The results are not only presented in terms of productivity changes between refactored and non-

refactored scenarios, but also the overall user satisfaction, relevance, and experience.

In almost all cases the refactorings improved end-users productivity. Moreover, in most cases users were

more engaged with the refactored version of the spreadsheets they worked with.

© 2016 Elsevier Inc. All rights reserved.

w

c

a

o

r

c

b

c

e
1. Introduction

Software refactoring (Fowler, 1999) is the process of modifying

the source code of software programs without changing their se-

mantics. That is to say that while improvements are expected on

the non-functional attributes of a piece of software, it is mandatory

that its associated functional attributes are not affected by refactor-

ings.

Improvements can be achieved, for example, by transforming

the software into a new version with reduced complexity, or with

added expressiveness in either the code or its model (or both), or
∗ Corresponding author.

E-mail addresses: jacome@fct.unl.pt (J. Cunha), jpf@di.ubi.pt (J. Paulo Fernan-

des), prmartins@di.uminho.pt (P. Martins), jorgemendes@di.uminho.pt (J. Mendes),

ruipereira@di.uminho.pt (R. Pereira), jas@di.uminho.pt (J. Saraiva).

D

r

f

L

http://dx.doi.org/10.1016/j.jss.2016.04.043

0164-1212/© 2016 Elsevier Inc. All rights reserved.
ith diminished overall size (fewer methods, classes, or lines of

ode).

In practice, a significant set of automated refactorings is usually

vailable for a concrete programming language. This reduces the

verall programming effort, since due to the improved quality of

efactored code traditional programming tasks become simpler and

an be implemented faster (Fowler, 1999).

Because of its generic applicability, code refactoring has

een studied in different contexts, ranging from software source

ode (Fowler, 1999; Mens and Tourwe, 2004) or software mod-

ls (Einarsson and Neukirchen, 2012), to spreadsheets (Badame and

ig, 2012). We have ourselves proposed (Cunha et al., 2014) a se-

ies of refactorings for ClassSheets (Engels and Erwig, 2005).

ClassSheets are a high level, object-oriented modeling language

or spreadsheets. Integrating concepts from the Unified Modeling

anguage (UML), this language provides a modular and abstract

http://dx.doi.org/10.1016/j.jss.2016.04.043
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.04.043&domain=pdf
mailto:jacome@fct.unl.pt
mailto:jpf@di.ubi.pt
mailto:prmartins@di.uminho.pt
mailto:jorgemendes@di.uminho.pt
mailto:ruipereira@di.uminho.pt
mailto:jas@di.uminho.pt
http://dx.doi.org/10.1016/j.jss.2016.04.043

J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250 235

m

i

v

s

t

e

a

a

c

2

e

l

l

s

a

t

e

r

i

o

(

o

i

M

r

e

o

t

t

t

d

n

t

h

e

t

a

o

s

p

e

e

p

r

e

p

f

f

l

o

c

s

S

v

t

i

S

2

l

m

s

m

t

s

t

r

o

b

s

s

P

c

S

r

w

z

r

i

v

S

T

T

o

T

e

S

b

p

i

w

O

M

2

s

i

a

v

ethodology for dealing with spreadsheets, and namely to spec-

fy and maintain their business logic.

The appearance of this modeling language allowed us to de-

elop an environment where concrete spreadsheets (or spread-

heet instances) are automatically derived from, and main-

ained together with abstract specifications (or spreadsheet mod-

ls) (Engels and Erwig, 2005; Cunha et al., 2012c). This means that

n evolution step on either the spreadsheet instance or its model is

utomatically propagated to the associated artifact, ensuring their

onsistency at all times (Cunha et al., 2012b).

In such a model-driven setting, we have shown (Cunha et al.,

015) that end-users are more efficient (that is, they complete

quivalent tasks in less time) and effective (that is, they commit

ess errors) when they use a model-driven spreadsheet over regu-

ar spreadsheet data. In fact, that paper presents an empirical study

howing that errors can be prevented by carefully reasoning about,

nd designing, a concise model, instead of doing so with a poten-

ially large spreadsheet. This confirms an earlier idea that differ-

nt, more refined, representations (or models, even though these

epresentations are all at what we consider here the spreadsheet

nstance level) for data in a spreadsheet can improve productivity

f end users (Beckwith et al., 2011).

In this paper we revise the refactorings proposed in Cunha et al.

2014) with the goal of improving the overall quality characteristics

f ClassSheet models. The proposed refactorings are: extract class,

nline class, move attribute, move formula , and remove middle man . 1

oreover, we have specified these refactorings using our bidi-

ectional transformational system previously introduced in Cunha

t al. (2012b). This is the first contribution of this paper.

Later, we also assess in practice the refactorings catalog

f (Cunha et al., 2014). With our work, we seek to find the answers

o the following research questions:

(i) Do the spreadsheet instances (automatically) derived from

refactored ClassSheet models allow end users to be more ef-

ficient than they would be if manipulating the instances de-

rived from the corresponding original (non-refactored) mod-

els?

(ii) Do the spreadsheet instances derived from refactored

ClassSheet models allow end users to be more effective than

they would be if manipulating the instances derived from

the corresponding original models?

(iii) Do spreadsheet users have a better experience working with

the spreadsheet instances derived from refactored ClassSheet

models instead of working with the instances derived from

the corresponding original models?

That is to say that we propose to evaluate ClassSheet refac-

ored models by analyzing the productivity in their instances, since

hese are standard spreadsheets, a software artifact that is used

aily by millions of end users worldwide. We analyze the effective-

ess and efficiency aspects of productivity, and also by measuring

he overall experience of their users. With this goal in mind, we

ave designed and conducted an empirical study with spreadsheet

nd users, being this study, as well as the analysis of its results,

he second and main contribution of this paper. In this study, we

nalyzed the quantitative and qualitative differences of the usage

f (already) refactored spreadsheet models versus non-refactored

preadsheet models from an end-user’s perspective.

The lessons learned from the results of our study are very

romising. Through a series of statistical experiments, we found

vidence that refactorings do allow improvements of either the

fficiency or the effectiveness of its instances (or both), with the
1 As the names suggest, and since ClassSheets resemble the object-oriented (OO)

aradigm, the refactorings we proposed are based on the ones available in the OO

ealm.

e

s

t

r
xception of a single refactoring from the refactoring catalog pro-

osed in (Cunha et al., 2014).

Finally, we also gathered from the participants of our study

eedback of a more qualitative nature. While the analysis of such

eedback is exposed to a certain degree of subjectiveness, we be-

ieve that most of it provides further evidence that the refactorings

f Cunha et al. (2014) allow the improvement of other spreadsheet

haracteristics such as readability, understandability or overall user

atisfaction.

This paper is organized as follows . We start by introducing in

ection 2 what model-driven spreadsheets are. In Section 3 we re-

ise the previously introduced refactorings. In Section 4 we present

he empirical validation of the refactorings proposed. Related work

s presented in Section 5 and conclusions and future work in

ection 6 .

. Model-driven spreadsheets

Engels and Erwig (2005) introduced the language ClassSheet to

everage handling spreadsheets to a more conceptual level. In a

odel-driven setting, a ClassSheet is the model and the spread-

heet data the corresponding instance. Indeed ClassSheets are

ore abstract than spreadsheets themselves, smaller, and easier

o reason about. This language, which has a textual and a vi-

ual/graphical representation, has been embedded in spreadsheets

hemselves (Cunha et al., 2011). In such embedding the visual rep-

esentation was used. Fig. 1 shows an embedded ClassSheet model

f a small warehouse for a bar/coffee shop distribution (the num-

ered areas will be referenced in Section 3). Note this spread-

heet does not represent the actual data as it is shown in a second

preadsheets in Fig. 2 .

On the top half (rows 1 through 6), we have three classes:

roduct, Client , and Order. Product (cell range A3 : B5 and J3 : K5)
ontains a product ID , its Name , Unit Price , and amount in

tock , while expanding vertically (indicated by the ellipsis on

ow 5). Client (cell range C1 : G2) contains the client’s Name , along

ith his/her Address , City , and Country , and expands hori-

ontally (indicated by the ellipsis on column I). The Order (cell

ange C3 : H5) is a relationship class which arises due to the join-

ng of a Product and a Client . This class contains a Quantity
alue of the product, an Order Date , a product Category , a

old Price formula to calculate the price, and the warehouse’s

oSellprice (expected price) for selling all of that product.

he ID in the Client class references their Contact Info , a class

n the bottom half (cell range F8 : H11), which has the client’s

elephone and Email . The Seller ’s ID in the Order class ref-

rences the Seller class (cell range A8 : B11) which references the

ellInf class (cell range C8 : E11) containing the Name , Cell num-

er, and Home number of the seller. These last three classes ex-

and vertically.

Fig. 2 illustrates an instance of the model from Fig. 1 . Start-

ng from the bottom left corner, in a counter-clockwise direction,

e can see instances for the Seller , SellInf , ContactInf ,
rder , two instances of Client (with the names Tiago C. and

arco C.) and four instances of Product .
Using ClassSheets we have created MDSheet (Cunha et al.,

012c), a framework that provides a bidirectional model-driven

preadsheet environment. The techniques and language described

n that work allow transformations/evolutions from models to be

utomatically applied to the corresponding instances and vice-

ersa, as illustrated in Fig. 3 .

Given a spreadsheet conforming to a ClassSheet, the user can

volve the model through an operation of the set Op M

, or the in-

tance through an operation of Op D . The performed operation on

he model/instance is then automatically transformed into the cor-

esponding set of operations on the instance/model using the to

236 J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250

Fig. 1. An example of an embedded ClassSheet model for a warehouse goods distribution.

Fig. 2. An instance for the warehouse goods distribution ClassSheet shown in Fig. 1 .

conforms to conforms to

Op

Op

to
from

M

D

ClassSheet

Spreadsheet

ClassSheet'

Spreadsheet'

Fig. 3. Diagram of MDSheet bidirectional transformation system.

c

o

T

d

g

a

b

r

f

m

i

c

c

c

a

t

c

m

t

a

M

C

3

d

d

i

s

b
and from transformations, respectively. A new model and data is

obtained with the new data conforming to the new model.

For transformations of models and instances, Op M

and Op D re-

spectively, we have defined a grammar that represents the func-

tions operating on each one. To implement refactorings on models

we will use the former, and benefit from the existing infrastruc-

ture: operations on models will automatically reflect themselves

on updates on the instance.

ModelOperation defines the grammar for the Op M

operations.

The application of an update op M

: Op M

to a model m : Model is

denoted by op M

m : Model .

The first operation, addColumn M

, adds a column in a particular

place in the spreadsheet. The Where argument specifies the relative

location (Before or After) and the given Index defines the position

where to insert the new column. This solves ambiguous situations,

like for example when inserting a column between two other
olumns from distinct classes. In an analogous way, the second

peration, delColumn M

, deletes a given column of the spreadsheet.

he operations addRow D and delRow M

behave as addColumn M

and

elColumn M

, but work on rows instead of on columns.

The operation setLabel M

allows to set a new label (Label) to a

iven cell, that is, it defines the value of a cell which cannot be an

ttribute, only text or numerical values. The cell position is given

y Point , which represents the indexes of the column and of the

ow of such cell (Index, Index).

Other operations include setFormula M

which allows to define a

ormula, Formula , on a particular cell. On the model side, a formula

ay be represented by an empty cell, by a default plain value (for

nstance, an integer or a date) or by a function application.

The operation replicate M

allows to replicate (or duplicate) a

lass. The following two operations allow the addition of a new

lass to a model: addClass M

adds a new static (non-expandable)

lass named ClassName , and addClassExp M

creates a new expand-

ble class. The Direction parameter specifies if it expands horizon-

ally or vertically. Finally, the function delClass M

is used to delete a

lass and respective cells.

Finally, the delClass M

deletes a given class.

Note that MDSheet enforces that each evolution step on the

odel or on the instance immediately and automatically affects

he other artifact. This means that both the instance and the model

re kept synchronous at all times. For more information on the

DSheet system please refer to Cunha et al. (2012b , 2012c , 2015).

In the next sections we will define a set of refactoring for

lassSheets that are based on this existing framework.

. Model-driven spreadsheets refactoring

As we are building our refactoring system on top of a model-

riven framework, we can and will use some of its features. In-

eed, to express the refactorings we will introduce a set of auxil-

ary functions defined using the already existing model evolution

teps presented in the previous section. Thus, each refactoring will

e expressed as a set of transformations which can be mapped

J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250 237

i

t

a

m

i

3

d

l

t

o

b

w

t

s

t

c

A

c

c

t

s

a

e

i

r

s

T

c

d

l

l

r

a

g

t

m

t

f

3

F

o

p

s

c

m

(

u

a

F

o

m

t

n

R

c

t

t

c

n

(

a

C

a

E

r

F

n

P

3

W

m

t

attribute between classes due to information evolution.

Refactoring 1 MoveFormula

Require: fromClass, formulaName, toPoint, line

Ensure: [ModelOperation]

formula ← getFormula (fromClass, formulaName)

DeleteShift (fromClass, formulaName)

AddShiftForm (line, toPoint, formulaName, formula)
nto evolution steps. Recall that when these steps are applied to

he model, they also automatically make the instances co-evolve

ccordingly. This will ensure that any refactoring applied to the

odel will always produce the corresponding correct spreadsheet

nstance.

.1. Refactorings as evolution steps

The refactorings are defined using a set of auxiliary functions

efined next in ModelRefactoring . Such functions return an ordered

ist of the operations (model evolution steps) that must be applied

o the models to refactor them.

The AddShiftForm function adds a formula to the model, shifting

ther cells if necessary. It receives the indication argument if is to

e represented by column or a row (Line is either Column or Row),

here it is to be placed (Point), what is the name of the attribute

hat will contain the formula (AttributeName) and the formula it-

elf (Value). Before inserting the formula, the function checks if the

arget cell is empty (using the function isCellEmpty), and adds a

olumn or a row if it is not.

The AddShiftAtt and AddShiftRef functions are similar to

ddShiftForm , where the semantics of the values to be inserted

hange according to the function.

The DeleteShift function deletes an attribute (identified by its

lass name, ClassName , and its attribute name, AttributeName) from

he model, and shifts cells if necessary. It deletes the attribute by

etting the value of its cell to empty. If this operation results in

n empty column or in an empty row, the function removes the

mpty column or empty row.

The CreateClass function adds a new class to the model, allocat-

ng the required space. The replicate function used in CreateClass

eplicates a value a given number of times. In this way, it is pos-

ible to allocate the necessary columns or rows for the new class.

he operator ++ concatenates two list.

The DeleteClassShift removes a class from the model. Only the

lass name is needed to complete this operation. The function

elClass M

already performs the removal/shifting of cells.

All of our refactoring functions return the joining of the ordered

ists from the output of our auxiliary functions. This concatenated

ist is used by MDSheet to evolve the ClassSheet models to their

efactored version. However, we omit such joining to simplify the
lgorithms shown. To note, all the shift functions automatically or-

anize and shift surrounding cells.

We will now present a set of refactorings for ClassSheets, how

hey apply to the models of Fig. 1 , and how they can be imple-

ented in MDSheet. For each of them, we discuss when and why

hey would be needed, how to refactor, and express the refactoring

unction.

.2. Move formula

eature envy

In the OO paradigm it may happen that a method is used by

r uses too many attributes from another class. This undesirable

henomenon is called feature envy and has also been identified in

preadsheets (Hermans et al., 2012).

In our case, we can consider classes as being the ClassSheet

lasses and the methods as being their formulas. Indeed this

ethod–formula analogy as also been used in Hermans et al.

2012) .

Thus, we move formulas when they are more interested in and

sed by attributes of another class than the class on which they

re defined.

If we closely analyze the ToSellPrice formula (shown in

ig. 1 , with the red frame marked with an I), we can see that not

nly does it suffer from feature envy, but semantically it makes

ore sense being in the Product class since it is defined using at-

ributes from that class and not from the class Order (where it is

ow defined).

efactoring

Fowler typically suggests putting a method in the class which

ontains most of the data used by it (move method attribute). This

oo can be applied to model-driven spreadsheets. We can move

he ToSellPrice formula from the Order class to the Product

lass. This can be seen in Fig. 4 , in column L , since the formula has

ow the same background color as the other attributes in Product

namely UnitPrice and Stock).

This refactoring has the potential to improve the representation

nd understandability of the spreadsheet (Hermans et al., 2012;

onway and Ragsdale, 1997), as the formula is now closer to the

ttributes it uses, and semantically in the correct class.

volution

The steps shown in Refactoring 1 describe the move formula

efactoring

To execute the move formula refactoring on Fig. 1 to obtain

ig. 4 we would run:

MoveFormula (Order, ToSellPrice, Product, L4, Column)

MoveFormula takes information from the class Order ,
amely the value ToSellPrice , and moves it to the class

roduct , to the position L4.

.3. Move attribute

hen/Why

Another common refactoring for model-driven spreadsheets is

ove attribute . A simple reason to use it would be moving an at-

ribute in a class to visually enhance the readability, or move an

238 J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250

Fig. 4. Move formula and move attribute refactoring on ToSellPrice and Category respectively.

Fig. 5. Extract class refactoring on Address, City, and Country.

n

a

t

b

E

o

c

p

t

Refactoring 3 Extract Class

Require: fromClass, newClass, newClassPos0, newClassPos1, at-

trStartPoint, line, attrNames

Ensure: [ModelOperation] oPoint ← getAttribute (fromClass, attr-

Names[0])

expansion ← direction (fromClass)

CreateClass (newClass, expansion, newClassPos0, newClassPos1)

point ← attrStartPoint

AddShiftAtt (line, point, ‘id’, ‘0’)

for all attrName ∈ attrNames do

point ← nextPoint (point)
Another reason would be in a relationship class when it is de-

tected that the instanced value of an attribute varies between one

of the outer classes, and does not with the other. This means that

the attribute might be in the wrong place, and should be placed

in the class which directly affects the attribute. This problem can

also be found in relational databases due to incorrect normaliza-

tion (Maier, 1983; Cunha et al., 2009). We can see a sample of this

occur in Fig. 2 - II on the Category attribute.

Refactoring

Here we choose the attribute we wish to change places, and

choose what class and location in that class we want to change it

to. Looking at Fig. 1 - II, we would move the Category attribute

into the Product class, and obtain Fig. 4 as our new class.

Evolution

The steps listed in Refactoring 2 describe the move attribute

refactoring.

To execute the move attribute refactoring on the model pre-

sented in Fig. 1 to obtain the one presented in Fig. 4 we would

run:

MoveAttribute (Order, Category, Product, I4)

MoveAttribute moves the value Category from the class

Order to the class Product , more precisely to the position I4 .

3.4. Extract class

When/Why

Models can grow over time due to the creation of new at-

tributes. This growth eventually causes the model to become too

complicated and hard to understand. Where we once had a class

with a clear purpose, we now may have a class doing the work of

two. This is also a common scenario in the OO paradigm.

Since readability in a spreadsheet is important, as it is in any

software, the moment we have a subset of information which is of-

ten times neglected, it might be a good practice to extract this sub-

set, placing it aside as a new entity. For example, imagine that the

users of our spreadsheet example do not tend to use the Address ,
City , and Country attributes, as shown in Fig. 1 - III. As these

are a subset of client information, and make reading the Client

class difficult, it is a good candidate for the extract class refactor-

ing.

Refactoring

We first need to choose which subset of information we want

to extract to a new class and create this new class with a new
Refactoring 2 MoveAttribute

Require: fromClass, attributeName, toPoint, line

Ensure: [ModelOperation]

attribute ← getAttribute (fromClass, attributeName)

DeleteShift (fromClass, attributeName)

AddShiftAttr (line, toPoint, attributeName, attribute)
ame. The previous attributes will be removed from the old class,

nd placed into the new class along with an ID attribute. Finally,

he ID attribute is then referenced from the old class. This would

e applied to produce Fig. 5 from Fig. 1 - III.

volution

The steps in Refactoring 3 describe the extract class refactoring.

To execute the extract class refactoring on the model in Fig. 1 to

btain the one in Fig. 5 we would run:

ExtractClass (Client, ClientInf, Vertical, B8,

[address, city, country])

ExtractClass takes the class Client and creates the new

lass ClientInf . The new class grows vertically and starts on the

osition B8. The last argument is a list of values that will be ex-

racted to the new class.
attr ← getAttribute (fromClass, attrName)

DeleteShift (fromClass, attrName)

if v alue ≡ f ormula then

AddShiftForm (line, point, attrName, attr)

else

AddShiftAtt (line, point, attrName, attr)

end if

end for

AddShiftRef (line, oPoint, newClass + ‘Id’, newClass + ‘.id’)

J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250 239

Fig. 6. Inline class refactoring on the ContactInf class.

3

W

c

t

d

c

o

R

c

t

f

a

r

F

E

r

o

w

C

3

W

e

e

e

u

R

R

E

Fig. 7. Remove middle-man refactoring.

a

r

R

t

b

i

n

E

m

p

r

3

w

l

r

s

Refactoring 5 Remove Middle-Man
.5. Inline class

hen/Why

The inline class refactoring is the reverse of extract class. Inline

lass would be used in the cases where a class has insufficient jus-

ification of existing, due to not pulling its own weight, simply not

oing much , or even having often consulted information. In these

ases, one would remove the class, and join it with its outer-class

r those which reference it.

efactoring

When the user decides to use this refactoring, he/she would

hoose the unnecessary class to apply this refactoring to. The at-

ributes which existed in this unnecessary class would be trans-

erred over to the referencing classes, replacing the referencing ID
ttribute, and eliminating the class in question. We can see this

efactoring applied to the model in Fig. 1 - IV to obtain the one in

ig. 6 .

volution

The steps introduced in Refactoring 4 describe the inline class

efactoring.

To execute the inline class refactoring on the model in Fig. 1 to

btain the one presented in Fig. 6 we would run InlineClass ,
hich only has to receive as argument the name of the class

ontactInf , as can be seen next:

InlineClass (ContactInf, Al l Model Cl asses)

.6. Remove middle-man

hen/Why

A middle-man class is defined as a class which acts as a del-

gator between other classes. This class does not usually contain

nough responsibility, logic, or purpose other than the simple del-

gation of operations/information. Along with being insufficiently

seful, containing middle-mans usually complicates the structure
efactoring 4 Inline Class

equire: className, allClasses

nsure: [ModelOperation]

for all class ∈ allClasses do

if refers (class, className) then

refName ← getReferenceName (class, className)

DeleteShift (class, refName)

for all attr ∈ getClassAttributes (className) do

line ← getLineFor (class)

point ← getLastPointOf (class)

attrName ← getAttributeName (attr)

if attr ≡ formula then

AddShiftForm (line, point, attrName, attr)

else

AddShiftAtt (line, point, attrName, attr)

end if

end for

end if

end for

DeleteClassShift (className)

R

E

nd understanding of a spreadsheet (the same happens in the OO

ealm).

efactoring

When a middle-man exists it should be removed. Furthermore,

he classes which are being connected via the middle-man should

e directly connected to each other.

Looking at Fig. 1 - V, we would remove the Seller class, which

s only connecting itself to the SellInf class. We would then con-

ect the Order class directly to the SellInf class, as shown in Fig. 7 .

volution

Refactoring 5 list the steps which describe the remove middle-

an refactoring.

To execute the remove middle-man refactoring on the model

resented in Fig. 1 to obtain the one shown in Fig. 7 we would

un:

RemoveMiddleMan (Seller, Al l Model Cl asses)

.7. Refactored example

Fig. 8 shows the complete refactored version of the ClassSheet

e have been using as example. We were able to remove one use-

ess class, and organize the data to be semantically correct. The

efactorings also makes it easier for the user to read and use the

preadsheet more efficiently by joining attributes closer to their
equire: className, allClasses

nsure: [ModelOperation]

for all referencingClass ∈ getReferencesTo (allClasses, class-

Name) do

refName ← getReferenceName (referencingClass, className)

DeleteShift (referencingClass, refName)

for all referencedClass ∈ getReferencedClasses (allClasses,

className) do

line ← getLineFor (referencingClass)

point ← getLastPointOf (referencingClass)

AddShiftRef (line, point, refName, referencedClass)

for all attr ∈ getClassAttributes (className) do

attrName ← getAttributeName (attr)

if attr ≡ formula then

AddShiftForm (line, point, attrName, attr)

else

AddShiftAtt (line, point, attrName, attr)

end if

end for

end for

end for

DeleteShiftClass (className)

240 J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250

Fig. 8. The complete ClassSheet model after applying all the refactorings.

Fig. 9. The instance automatically co-refactored after refactoring the ClassSheet.

f

a

t

s

t

a

s

a

s

m

s

y

(

g

formulas, and placing often used attributes in classes easier to ac-

cess (e.g., joining the Client ’s email and phone into the Client
class). Fig. 9 shows the co-evolved instance, conforming to the

model.

Comparing the original instance to the refactored one, we have

14 less data cells, a reduction of 15%, due to the elimination of

redundant data. This reduction increases proportionally in relation

to the data in the instance. For example, if we were to add one

more client, we would have 22 less cells (17% reduction), and with

two new clients 30 less cells (18% reduction). We can easily see

that the larger our instance, the more impactful our refactorings.

In the next section we will present an empirical study show-

ing that indeed the refactored models induce spreadsheet instance

that are more effective and efficient to use from their users’ per-

spective. In fact, we will also show these users have a better expe-

rience when using such improved spreadsheets.

4. Empirical validation

In the scope of software engineering research, empirically eval-

uating newly proposed techniques or methodologies is considered

essential (Wohlin et al., 2012). Despite the fact that our work on

model-driven spreadsheet refactoring had received positive feed-

back from the research community, its assessment in a real-world

and practical setting is still crucial. For that reason, we have de-

signed and executed an empirical study to evaluate our proposed

model-driven spreadsheet refactorings.

In particular we are interested in evaluating the impact of the

refactored spreadsheets. Although the refactorings we propose are

for ClassSheet models, we intend to study their impact on the in-

stances. This is so for several reasons:

• The creation and maintenance of spreadsheet models is impor-

tant, but this does not tend to be done very often. Therefore,

the maintenance of the spreadsheet instances/data is of much

more importance and will happen much more often.
• One model can have several instances. Thus, the more im-

pact we have on the instances, the better the spreadsheets

can be considered as they have more impact, that is, they im-

pact all the instances users, and not only the one model cre-

ator/manager. Thus, although we could evaluate the manage-

ment of models themselves, to evaluate the impact of the refac-

torings on the instances is of much more importance.
• The users who create and manage the models are more ad-

vanced user than the ones operating the instances, that is, the

spreadsheets themselves. Thus, it is more important to improve

the working conditions of less advanced users as they may have

more difficulties using bad spreadsheets that more advanced

users (as the ones operating the models).

With this study we try to understand if our refactorings do in

act improve model-driven spreadsheets in terms of productivity

nd general user experience.

To analyze the productivity we designed a set of tasks for users

o perform on refactored and non-refactored versions on the same

cenario, measuring the amount of errors they committed each

ime, and also how much time it took them to perform such tasks.

To evaluate the users’ experience, we asked a few questions

bout their preferences (which we will detail in the next sub-

ections).

The perspective of this experiment is from the point of view of

 researcher who would like to know whether or not there is a

ystematic difference between using non-refactored and refactored

odels.

This section will detail the different stages we underwent: de-

ign and preparation (Section 4.1), execution (Section 4.2), anal-

sis (Section 4.3), interpretation (Section 4.4), and discussion

 Section 4.5). We can summarize the scope of this study as sug-

ested in Wohlin et al. (2012) as follows:

Analyze the spreadsheet usage

for the purpose of evaluation

J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250 241

4

p

e

a

n

r

i

u

u

d

n

a

i

a

4

i

c

s

t

r

f

4

f

4

u

t

s

a

s

a

s

p

T

v

m

4

a

t

t

t

m

H

m

u

i

o

4

s

t

T

t

d

l

with respect to its productivity and user satisfaction ,

from the point of view of the researcher

in the context of the usage of two different spreadsheets by

Master students.

.1. Design

The goal of this study was to measure the quality of our pro-

osed refactorings from a user perspective, and evaluate the differ-

nces between refactored and non-refactored models.

Specifically, we wanted to evaluate the effectiveness, efficiency ,

nd user acceptance of our proposed model-driven refactorings over

on-refactored versions:

• Effectiveness . Considering how common it is to find errors in

spreadsheets, one of the objectives of our approach was to

evaluate the effectiveness of refactored and non-refactored in-

stances of spreadsheet models.
• Efficiency . Considering how important it is to be able to quickly

perform actions in spreadsheets, we studied the time it takes to

complete each task. This should provide information regarding

the efficiency (or lack of it) of spreadsheet model refactorings,

and observe the existence of potential tradeoffs between effec-

tiveness and efficiency.
• User acceptance . We might have cases where our proposed

refactorings may drastically reduce the time needed to perform

normal spreadsheet tasks, but in turn may make it difficult for

the user to understand and use the spreadsheet (or the in-

verse). Due to this, and due to the importance of user expe-

rience, we also want to evaluate the user acceptance.

This study was designed to be conducted in a controlled envi-

onment. In order to achieve this, we decided to perform the study

n an off-line academic setting. The participants in this study were

niversity students attending a Master’s program. As we were eval-

ating the outcome of our proposed refactorings, we did not intro-

uce ClassSheet models to the participants, only the refactored and

on-refactored instances of those models. Our participants were

sked to solve the traditional tasks of looking up, updating, and

ntroducing new information in spreadsheets which were closely

dapted from real-world examples.

.1.1. Hypotheses

As previously stated, we want to test if our proposed refactor-

ngs do affect effectiveness (reduced error rates), the efficiency (in-

reased productivity), and user acceptance. Thus, we can informally

tate three hypotheses:

1. In order to perform a given set of tasks, users are less error

prone on the proposed refactored versions, comparing to non-

refactored ones.

2. In order to perform a given set of tasks, users spend less time

when using our proposed refactored versions instead of non-

refactored ones.

3. In order to perform a given set of tasks, users prefer, perceive,

and find it easier to use the refactored versions over the non-

refactored ones.

Formally, three hypotheses are being tested: H T for the time

hat is needed to perform a given set of tasks, H E for the error

ate found and H U for the user choice rate. They are respectively

ormulated as follows:

1. Null hypothesis , H T 0
: The time to perform a given set of tasks

using our refactored versions is not less than that taken with

non-refactored versions. H T 0
: μd � 0 , where μd is the expected

mean of the time differences.
Alternative hypothesis , H T 1
: μd > 0 , i.e. , the time to perform a

given set of tasks using our refactored versions is less than with

non-refactored versions.

Measures needed : time taken to perform the tasks.

2. Null hypothesis , H E 0
: The error rate in spreadsheets when using

our refactored versions is not smaller than with non-refactored.

H E 0
: μd � 0 , where μd is the expected mean of the differences

of the error rates.

Alternative hypothesis , H E 1
: μd > 0 , i.e. , the error rate when us-

ing our refactored versions is smaller than with non-refactored

versions.

Measures needed : error rate for each spreadsheet.

3. Null hypothesis , H U 0
: The user choice rate in spreadsheets when

using our refactored versions is not smaller than with non-

refactored. H u 0 : μd � 0 , where μd is the expected mean of the

differences of the user choice rate.

Alternative hypothesis , H U 1
: μd > 0 , i.e. , the user choice rate

when using our refactored versions is smaller than with non-

refactored versions.

Measures needed : user’s choice for each attribute (preference,

understandability, ease of use, and correctness) for each spread-

sheet.

.1.2. Variables

The independent variables are: H T the time to perform the tasks ,

or H E the error rate , and H U for the user choice rate .

.1.3. Subjects and objects

The participants in this study were first year Master students,

ndergoing a course at the Universidade do Minho. A total of

wenty students accepted our invitation and participated in our

tudy. More details about the subjects participating in the study

re presented in Section 4.3 .

The objects for this study consisted of three different spread-

heets. Two of these (each with a specific scenario) were for the

ctual study, which are further described in Section 4.1.5 . The third

preadsheet was used to perform a tutorial alongside the partici-

ants before beginning the study using the other two spreadsheets.

his design choice attempts to minimize the threats to construct

alidity, namely the mono-operation bias (refer to Section 4.4.1 for

ore details on threats to validity).

.1.4. Design

For this study, we followed a standard design with one factor

nd two treatments, as presented in Wohlin et al. (2012) . The fac-

or is the spreadsheet usage , that is, the insertion, update, and re-

rieval of information in a spreadsheet. The treatments are refac-

ored and non-refactored spreadsheets. The dependent variables are

easurable in a ratio scale, and hence a parametric test is suitable.

owever, as described further on, other conditions to apply a para-

etric test are not met. Thus, an equivalent non-parametric test is

sed.

Furthermore, blocking is provided in a way that each hypothesis

s tested independently for each scenario. This reduces the impact

f the differences between the two.

.1.5. Instrumentation

As mentioned, our study was supported using three different

preadsheets, two for the actual study and one for a pre-study

utorial. We will begin by explaining the two used for the study.

he refactorings are fully implemented in the MDSheet framework

o automatically evolve the ClassSheets. The participants, however,

id not have to interact with the framework, but only to visually

ook for information and fill in empty cells, as explained below.

242 J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250

t

t

h

g

p

t

t

c

s

e

r

a

t

w

i

w

t

s

f

fl

t

a

o

s

T

t

a

4

a

e

f

c

o

p

a

s

The first has a scenario identical to the one used in our previ-

ous example (Section 2): a warehouse goods distribution spread-

sheet. This spreadsheet had two worksheets of the warehouse ex-

ample, with three of the five refactorings applied on one, and the

remaining two on the other. In other words, we shuffled the five

refactorings between the two worksheet copies. This spreadsheet

scenario will be termed orders from now on.

In this first scenario, orders , we had seven instances of the

client class, seven instances of client information, nine instances

of the product class, 63 instances of the order class, and nine in-

stances of seller class.

The second spreadsheet scenario was heavily based on a

spreadsheet we obtained from a local food bank in Braga. This

spreadsheet scenario contained information on the distribution of

basic products and commodities. Specifically it contained informa-

tion on: the products, the various institutions, and the amount of

each product distributed to each institution. The product contained

information on the product’s name, code, amount in stock, cate-

gory, and distribution unit. The institutions had information on its

name, id, type, city, country, amount of lunch and dinner hampers,

total hampers, website, email, and telephone. Replicating the struc-

ture, we created the ClassSheet classes for this scenario, giving us a

total of six classes (product, institution, distribution, address, web-

sites, and contact information). Once again, this spreadsheet had

two worksheets of the same example, with three of the five refac-

torings applied on one, and the remaining two on the other. This

spreadsheet scenario will now be termed foodbank from now on.

The division of refactorings between the two worksheets allows us

to evaluate the individual refactorings, and eliminate the tendecies

of always selecting one spreadsheet (the fully refactored version)

over the other (with no refactorings).

In our second scenario, foodbank , we had 10 instances of the

product class, 18 instances of the institution class, 180 instances

of the distribution class, five instances of the address class, and 18

instances for both the websites and contact information classes.

To note, the application of the refactorings did not alter the

information represented in the spreadsheets, only the layout and

structure of the various classes, sometimes adding or removing

classes, but always maintaining consistency.

Guidelines were also provided to participants: they consisted

of the list of tasks to be performed. For these tasks, we used

Google forms, allowing us to present the tasks to the participants

in their own computer in a simple way. Using this form, we had

a page with the download links for the spreadsheets used in this

study (both for the tutorial, and the two study scenarios), a pre-

study questionnaire to obtain some basic profiling of our partic-

ipants, simple instructions and comments, and a page to upload

the spreadsheets post-study. The tasks were presented in the form,

allowing us to take advantage of the integrated form mechanisms

such as text-boxes and grids. The form was also divided into two

parts, the first with the orders’ tasks and the second with the food-

bank’s tasks, allowing them to focus on one scenario at a time.

For both scenarios, five tasks were presented. Each task is re-

lated to one of our five refactorings, allowing us to evaluate each

refactoring individually and in an isolated form. Each refactoring

has two associated tasks (one in each scenario). If in one sce-

nario a data insertion/update task is given, a data retrieval task is

given in the other scenario, and vice-versa. Having both types of

tasks (read/write) gives us a better view of the refactor. Part of the

tasks are shown (non-essential data is ommitted, being replaced

by “[...]”):

Orders

(i) “Fill in the missing categories for the products. Consult

the following table: [...]”

(ii) “How many different cities do we have clients in?”
(iii) “What is the ExpectedProficts value of: [...]”

(iv) “We need to contact our clients [...]. What are their tele-

phone numbers?”

(v) “[...] takes care of all the [...] orders from now on. Update

the spreadsheet to represent this information.”

Foodbank

(i) “The category of [...]. Please update the spreadsheet to

represent this information.”

(ii) “We need to contact [...]. What are their emails?”

(iii) “Correct the total amount of meals [...] have”

(iv) “What are the distribution units of [...]?”

(v) “Fill in the missing institution addresses. Consult the fol-

lowing table: [...]”

Each task was to be completed in each worksheet, for both

he refactored and non-refactored version. The tasks were shown

wice, with a preceding “Using worksheet X”, and each repetition

ad two text boxes for the participants to state the time they be-

an and the time they finished the task (a large clock was dis-

layed during the study for the participants).

In the tasks with data insertion/update, they would directly use

he spreadsheets. While in data retrieval tasks they would answer

he question using Google form’s incorporated text boxes. In the

ase of the data retrieval tasks, each worksheet (from each spread-

heet) had different values so the answer would not be the same,

liminating learning effects and forcing the participants to actively

etrieve data.

Additionally, at the end of each task, the participants were

sked to choose between the first worksheet, the second, or nei-

her on four attributes:

(i) “Which worksheet do you prefer to work with?”

(ii) “Which one do you feel is more understandable?”

(iii) “Which one do you feel was easier (to complete the task

in)?’

(iv) “Which one do you believe has the more correct structure?”

Users also had a section where they could comment on the two

orksheets, stating their opinions and what they would change.

Finally, we copied each of the two scenario spreadsheets, and

nverse the worksheet order, providing yet another shuffle. In other

ords, in one copy we had the first worksheet as worksheet A and

he second as worksheet B , while in the second copy the first work-

heet was worksheet B and the second worksheet A . Now we have

our physical spreadsheets (each scenario repeated) with shuf-

ed worksheets. The two copied forms would be distributed be-

ween two randomly chosen groups (each form had the appropri-

te download links for the associated spreadsheets).

The third spreadsheet (tutorial spreadsheet) contains examples

f the previous two scenarios to allow the participants to under-

tand and work with these examples before beginning the study.

his allowed them to familiarize themselves with the spreadsheet,

he layout, and context. The tutorial consisted of insertion, update,

nd data retrieval tasks.

.1.6. Data collection procedure

To correctly collect the spreadsheet data from the participants,

nd match the spreadsheet with the form, we would hand out, to

ach participant, a ticket with a number and the form url link be-

ore executing the study. Google’s forms not only allowed us to

reate the tasks, but also allows an automatic form submission

f the participant’s responses. This information was automatically

laced into a spreadsheet when the participant finished the study,

nd provided an upload link for the spreadsheets.

As Google forms automatically collected the form data, the

teps were simple:

J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250 243

o

c

p

s

s

v

4

t

v

v

W

p

p

c

l

e

t

s

t

v

f

t

l

i

a

4

p

t

s

o

T

fi

w

c

fi

b

s

e

o

F

s

t

s

r

T

w

t

u

t

m

o

t

e

l

p

w

4

i

i

n

p

t

t

i

l

a

f

4

4

g

w

t

M

t

g

t

f

m

4

t

t

p

e

a

i

4

s

r

fi

b

s

t

c

t

5

l

p

h

r

t
1. Handing out and filling study consentment form.

2. Handing out ticket number and study form url link.

3. Spreadsheet tutorial with participants.

4. Performing the study.

5. Submission of study form.

6. Submission of spreadsheets the participants edited during the

study.

7. Collecting consentment forms.

All the participants were expected to perform all the tasks

n the respective spreadsheets. We also asked the participants to

omplete the tasks in a quick but correct way. Thus, we did not

rioritize answering time in relation to correctness. The goal of the

tudy is not to compare one spreadsheet against another, but in-

tead to compare the spreadsheet usage of our proposed refactored

ersions to the non-refactored ones.

.1.7. Analysis procedure and evaluation of validity

The analysis of the collected data is achieved performing paired

ests where the performance of each participant on the refactored

ersion of the spreadsheet is tested against the non-refactored

ersion. For this, the following tests are available: paired t -test,

ilcoxon sign rank test, and the dependent-samples sign-test.

Since the study is composed of several tasks, and each partici-

ant may not complete all of them, participants that do not com-

lete all the tasks for both treatments of a spreadsheet will be dis-

arded from the global analysis of that spreadsheet. This will al-

ow us to compare the results of the remaining participants against

ach other, and not doing so could lead to incorrect illations given

hat a concrete task may be more error-prone than the others.

To ensure the validity of the data collected, several kinds of

upport were planned: constant availability to clarify any doubt,

utorial to teach and get used used to the spreadsheet, and super-

ise the work done by the subjects in a way that does not inter-

ere with their tasks. This last point consists of navigating through

he room and see which subjects look like they are having prob-

ems and try to help them if it is about something that does not

nfluence the results of the study (problems using Google Forms,

ccessing and downloading the worksheets, for example).

.2. Execution

This empirical study was performed in a classroom with twenty

articipants, all of them being Master students in informatics. All

he participants performed the study at the same time, but the

preadsheets were shuffled in a way that no participant could use

ther participant’s answers.

Initially, a consentement form was signed by the participants.

his was to explain the purpose of the study, ensure them con-

dentiality, and inform them they could leave at anytime they

anted without any kind of reprisal. All the participants were en-

ouraged to write whatever answer or opinion they thought best

t the questionnaire.

The concept of classheet instances was introduced, and some

asic problems related to reading, analyzing and editing a spread-

heet were performed with them to ensure they had the basic nec-

ssary knowledge, and to ensure they were not completely oblivi-

us to the tasks.

The study consisted of a form created with the aid of Google

orms, and spreadsheets the users were suppose to use during the

tudy. All the participants were given a number which they used

o download the spreadsheets to ensure different variations of the

preadsheets were spread across the participants and across the

oom.

The participants were also asked to use their own computers.

his was to ensure they were working with their familiar hard-

are, and the time for the tasks was not spent unnecessarily on
hings like using an unfamiliar operative system or keyboards with

nfamiliar layouts.

The first part of the form consisted on basic information related

o the participants (gender, age) and their expertise with software

odels and spreadsheets. The other parts of the forms consisted

n a set of tasks, and an upload site for the participants to upload

he result of tasks that asked them to edit or insert information.

During the study the participants were supervised. This was to

nsure that tasks that were not related to the study itself (down-

oad and upload spreadsheets, access the forms, problems inter-

reting the questions, for example) were rapidly answered and

ould not interfere with the time of the main tasks.

.3. Analysis

The global analysis was performed with results from the partic-

pants who completed all the tasks for both scenarios, as described

n Section 4.1.7 . A initial step was to normalize all the shuffled sce-

arios and worksheets, after which we had a total of 19 out of 20

articipants. Only 1 was fully discarded, because halfway through

he study an external problem occurred preventing him from con-

inuing.

We analyzed each refactoring from each scenario individually,

.e., we did not join the data from both scenarios into one. This al-

owed us to analyze the refactorings from two different uses: read

nd write . We then merged the data and analyzed the refactors

rom a global perspective.

.3.1. Descriptive statistics

.3.1.1. Subjects: . Basic information about the participants was

athered, namely their gender, age, background, and familiarity

ith spreadsheets and models (such as UML, ER, CPN, etc). From

he twenty participants, nineteen were male and one was female.

ost of them were aged between twenty-one and twenty-six, with

wo being over twenty-six. The subjects all came from an IT back-

round, either informatics engineering, computer science , or informa-

ion technology and communication . The average level of familiarity,

rom a scale of 1 (low) to 5 (high), for spreadsheets was 4, and for

odels was 3.

.3.1.2. Time spent: . As expected, differences were found in the

ime that participants used to perform the tasks. The minimum

imes recorded on each scenario were by participants using our

roposed refactorings. Table 1 shows the average time in seconds

ach participant took to achieve the given read tasks, both with

nd without our proposed refactorings.

Similar results were obtained for the write tasks, shown below

n Table 2 .

.3.1.3. Error rates: . To evaluate the correctness of the spread-

heets produced during the study, error rates were used. Each task

equired either an answer to be given, or a series of cells to be

lled and updated. In the cases where an answer would need to

e given (read tasks), we considered a wrong answer as an error,

o either 0% error or 100%. In the cases where the participant had

o insert and update (write tasks), we considered every possible

ell as a possible error. So if the participant had to insert informa-

ion into 4 cells, and wrote 2 incorrect values, the error rate was

0%.

In Table 3 , we show the amount of participants that made at

east one error in the given tasks, both with and without our pro-

osed refactorings, in both scenarios.

A superficial analysis shows that our refactored versions

ad less participants committing errors compared to the non-

efactored version. The inline class tasks had no errors committed,

he remove middle-man (read and write) and the move attribute

244 J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250

Table 1

Average and standard deviation time in seconds each participant took to achieve the read tasks.

Move formula Move attribute Extract class Inline class Remove middle-man

Non-refact. 57.947 ± 45.227 53.474 ± 24.315 45.053 ± 19.293 49 ± 18.614 49.632 ± 20.699

Refactored 41.842 ± 28.775 30.526 ± 13.290 31.053 ± 23.350 48 ± 26.199 38 ± 13.561

Table 2

Average and standard deviation time in seconds each participant took to achieve the write tasks.

Move formula Move attribute Extract class Inline class Remove middle-man

Non-refact. 58.421 ± 31.904 206.158 ± 108.106 98 ± 56.788 50.263 ± 40.395 82.579 ± 31.370

Refactored 34.842 ± 11.645 85.789 ± 56.983 86.421 ± 33.191 35.684 ± 35.657 86 ± 52.237

Table 3

Amount of participants that made at least one error.

Move formula Move attribute Extract class Inline class Rem. middle-m.

Read Write Read Write Read Write Read Write Read Write

Non-refact. 8 3 2 4 8 2 0 0 1 1

Refactored 1 1 2 0 3 0 0 0 0 0

Table 4

Wilcoxon p-values for comparison of time.

Move formula Move attribute Extract class Inline class Remove middle-man

Read 0.013030 0 0 0.0 0 035440 0.013020 0 0 0.35550 0 0 0 0.023670 0 0

Write 0.0 021350 0 0 0.0 0 010490 0.32160 0 0 0 0.01110 0 0 0 0.63620 0 0 0

e

(

a

W

a

t

t

t

a

t

t

o

4

b

t

o

v

t

t

c

(

s

r

p

a

d

o

t

h

a

s

c
(read) tasks had same error rate, and the extract class (write) had

low amount of errors overall.

4.3.1.4. Acceptance: . In most cases participants chose our pro-

posed refactored versions over the non-refactored version in rela-

tion to the four attributes for user-acceptance: their preferred ver-

sion, which version they felt was more understandable, which one

they felt was easier (to complete the task in), and which one they

believed had the more correct structure. The choices of the partic-

ipants are represented in Fig. 10 and Fig. 11 for the read and write

tasks respectively.

In Fig. 10 , we can easily see that our refactored version was the

most popular, albeit in Fig. 10 (a) and (d) there does seem to be a

small handful of participants who chose the non-refactored version

in some of the attributes.

Looking at Fig. 11 we begin to see more of a competition. In

Fig. 11 (a) and (b), our version is the most popular. In Fig. 11 (c),

more participants chose the non-refactored version to be more un-

derstandable, while preferring the refactored version for the other

three attributes. Finally, in Fig. 11 (d) and (e), the results for the

two versions seem to be very simillar, with a slight advantage in

the non-refactored version.

4.3.2. Hypothesis testing

The significance level used throughout the evaluation of all the

tests is 0.05. The evaluation of the tests was performed using the

R environment for statistical computing (R Core Team, 2013).

4.3.2.1. Comparison of times . : The difference of times between

the execution of tasks in the non-refactored and refactored ver-

sions do not follow a normal distribution. Thus, we used the

Wilcoxon test, which is the best for these cases (Wohlin et al.,

2012).

Looking at the results of applying the Wilcoxon test to test our

hypotheses, shown in Table 4 , we can see that the time taken to

perform the tasks is statistically smaller using our refactorings as

opposed to the non-refactorings in 7 out of 10 cases.
We decided to further analyze the three non-passing cases,

xtract class (write), inline class (read) and remove middle-man

write), and verify if the inverse hypothesis is true, in other words,

re the non-refactored versions statistically faster. This produced

ilcoxon p-values of 0.6927, 0.6 60 6, and 0.3802 respectively. Once

gain, the results are greater than the significance level, and in

urn, we cannot conclude that one or the other version is statis-

ically faster.

We took this one step further and merged the data from the

asks into one instead of separate read and write operations. This

llowed us to analyze the refactorings from a global perspective of

he refactorings and non-refactorings. In this case, we can see that

he time taken to perform the tasks is statistically less using 4 out

f our 5 proposed refactorings, as shown in Table 5 .

.3.2.2. Comparison of error rates: . The differences of error rates

etween the execution of tasks in the non-refactored and refac-

ored versions do not follow a normal distribution. Thus, we used

nce again the Wilcoxon test to test the null hypothesis for both

ersions in order to be able to compare the results.

The results obtained from the tests, shown in Table 6 , show

hat the number of errors are statistically less using our refac-

ored versions in 4 cases, move formula (read and write), extract

lass (read), and move attribute (write). In the case of extract class

write), we do not have enough statistical evidence to claim the

ame, albeit the only two errors which occurred were on the non-

efactored version.

As expected and previously mentioned, the other cases did not

roduce any interesting results due to either having no errors, low

mount of errors, or same error rate. Once again we merged the

ata from the tasks into one instead of separate read and write

perations, and analyzed the error rates from a global perspec-

ive. We expected to have more interesting results as we also now

ave a bigger pool of error rates from both versions. The results

re shown in Table 7 . Here we can see that the errors rates are

tatistically smaller using 3 out of 5 of our refactorings. The inline

lass did not produce any results (as there were no errors), and the

J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250 245

(a) Move Formula (read) (b) Move Attribute (read)

(c) Extract Class (read) (d) Inline Class (read)

(e) Remove Middle-Man (read)

Fig. 10. Post-task questions (read).

Table 5

Wilcoxon p -values for comparison of time from a global perspective.

Move formula Move attribute Extract class Inline class Remove middle-man

0.0 0 09704 0.0 0 0 0 04768 0.03223 0.004707 0.5321

Table 6

Wilcoxon p-values for comparison of errors.

Move formula Move attribute Extract class Inline class Remove middle-man

Read 0.03630 0 0 0 0.0 0 0 0 0 0 0 0 0.035930 0 0 0.0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0

Write 0.20710 0 0 0 0.04860 0 0 0 0.17290 0 0 0 0.0 0 0 0 0 0 0 0 0.50 0 0 0 0 0 0

Table 7

Wilcoxon p-values for comparison of errors from a global perspective.

Move formula Move attribute Extract class Inline class Remove middle-man

0.01675 0.04876 0.01844 0.0 0 0 0 0 0.1855

246 J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250

(a) Move Formula (write) (b) Move Attribute (write)

(c) Extract Class (write) (d) Inline Class (write)

(e) Remove Middle-Man (write)

Fig. 11. Post-task questions (write).

Table 8

Binomial sign test p-values for comparison of user choices of preference, understandability, ease of use, and correctness.

Move formula Move attribute Extract class Inline class Rem. middle-man

R W R W R W R W R W

P 0.2101 0.0 0 0 03052 0.007385 0.0 0 02747 0.0 0 0 0 0763 0.2101 P 0.05737 0.6072 0.0 0 0 01526 1.0

U 0.2101 0.0 0 027470 0.007538 0.3593 0.0 0 07286 0.6072 U 0.07681 1.0 0.001312 0.8145

E 0.09625 0.0 0 0 01526 0.02127 0.0 0 0 0 0763 0.0 0 0 07629 0.1671 E 0.6291 0.8036 0.0 0 0145 0.4807

C 0.4545 0.0 0 05188 0.001312 0.0 0 0 07629 0.0 0 0 0 0763 0.03088 C 1.0 0.3323 0.004425 0.03088

u

t

i

t

t

e

a

f

b

e

t

a

remove middle-man did not produce enough statistical evidence to

pass our hypothesis.

4.3.2.3. User acceptance: . In order to test this hypothesis, we

only considered the participants who chose one version over the

other, and did not consider answers stating the user did not have a

specific preference. For this, we used a binomial sign test, with the

same 0.05 significance level, to test the null hypothesis for both

versions.

Table 8 shows the p-values for our binomial sign tests. In

more than half of the cases, we had enough statistical evidence

to validate our hypothesis. In a majority of the read tasks, users

chose our refactored version for the four attributes (preference (P),
nderstandability (U), ease of use (E), and correctness (C)). Par-

icipants seem to be divided among the last three, extract class,

nline class, and remove middle-man, for the write tasks. While

wo out of these three had enough statistical evidence showing

hat participants believed it to be more correct, we did not have

nough evidence to validate our hypothesis for the other three

ttributes.

Finally, we once again merged the read and write tasks to

orm a global perspective analysis on our refactorings, which can

e seen in Table 9 . Our first three refactorings show statistical

vidence to validate our hypothesis on our four attributes, with

he last two yielding the same conclusion from the lower level

nalysis.

J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250 247

Table 9

Binomial sign test p-values for comparison of user choices of preference, understandability, ease

of use, and correctness from a global perspective.

Move formula Move attribute Extract class Inline class Remove middle-man

P 0.0 0 01131 0.0 0 0 0 0256 0.0 0 0 03856 0.4583 0.007

U 0.0 0 03241 0.007632 0.05011 0.2962 0.06525

E 0.0 0 0 02236 0.0 0 0 0 0 077 0.0 0 01162 1.0 0.06525

C 0.002102 0.0 0 0 0 0 012 0.0 0 0 0 0194 0.6076 0.7428

d

t

l

t

m

T

c

w

p

b

f

d

e

t

4

t

d

t

4

C

i

t

o

1

4

m

t

p

a

t

v

s

H

4

j

s

s

l

o

t

p

s

w

s

f

v

t

w

s

t

w

4

s

w

b

n

s

a

a

w

p

u

s

4

g

f

t

t

t

r

s

4

m

s

n

(

t

e

4

t

T

O

2

s

2

n

t

a
Interestingly enough, if we look at Table 5 , we can see how we

o in fact improve the user’s efficiency with the inline class during

he write tasks. We also believe that both the extract class and in-

ine class are heavily influenced by the way of how he/she prefers

he data. In other words, if they rather work with more denor-

alized data (inline class) or more normalized data (extract class).

his is also supported by the fact that users believed the extract

lass versions were more correct (in both read and write tasks),

hile the inline class versions were apparently not so clear. One

ossible reason is that these are MSc students have studied data-

ase normalization, and correct data design patterns, and possibly

ound it incorrect and harder to initially understand the idea of

enormalizing data. Nevertheless, extract class and inline class are

ssentially opposite operations, and this allows users to structure

heir data to their preference.

.4. Interpretation

The results from this empirical analysis suggest that the refac-

orings we propose create better instances, by increasing user pro-

uctivity. However, some aspects have to be taken into account in

his results.

.4.1. Threats to validity

The goal of this study is to analyze if applying refactoring to a

lassSheet improves the overall quality of both the model and its

nstances, while ensuring that the setting presented represents the

heory we developed with this work.

Next, we analyze possible threats to the validity of the results

btained, divided in the four categories of (Cook and Campbell,

979):

.4.1.1. Conclusion validity: . The low number of participants

ight imply a low statistical power from the results. To overcome

his issue more powerful statistical tests were performed where

ossible, taking always into account the necessary assumptions.

Subjects were asked to perform the same task on refactored

nd non-refactored spreadsheets. We were carefully to shuffle the

asks so that half the participants started with the refactored

ersion and half the participants started with the non-refactored

preadsheet, which means the overall results we not affected.

owever, there might exist some ‘carry-over effect’.

.4.1.2. Internal validity: . Several actions were taken with the ob-

ective of minimizing the effects of independent variables.

The time to perform the study was minimized as much as pos-

ible, to maintain the participants focused on the tasks, and the

tudy was performed only once with these participants.

All the material for the study (forms, spreadsheets, the up-

oading website) were developed with the concerns of collecting

nly relevant information and minimizing distractions to the main

asks. Also, all the subjects whom we did not discard (19 out of 20)

erformed all the tasks (but in different order and with spread-

heets with different values but the exact same layout).

By controlling the group of participants and the tools they used

e controlled and reduced threats to the internal validity of this

tudy.
There is also the possibility of existing errors when measuring,

or example, the times the participants took to perform each indi-

idual task. This was minimized by the fact that participants had

he exact same background, performed the exact same tasks and

ere using familiar environments (all participants used their per-

onal computers). This means variations in time are due to the

asks themselves, not to external factors, but introduces problems

hen generalizing (further below we explain why).

.4.1.3. Construct validity: . To ensure construct validity on this

tudy we defined several hypothesis that covered the aspects we

anted to analyze. Also, the participants were guaranteed not to

e affected by the result or by their answers because they were

ot under evaluation (this was told to them several times).

The tasks we asked the participants to perform are typical

preadsheet tasks of information analysis, edition and retrieval,

nd they were introduced to these during a preliminar tutorial. We

lso gave the participants spreadsheets with different values (this

as told to them), to avoid them copying the answers from other

articipants, since they were all in the same room.

We believe the construction of this study allows a correct eval-

ation of the implication of refactorings in the usage of spread-

heets.

.4.1.4. External validity: . This validity is related to the ability of

eneralizing the results of the study to industrial practice. The dif-

erent spreadsheets used were all based on spreadsheets we ob-

ained from industrial partners, with minimal changes only to con-

rol the duration of the study. Nevertheless, since the group of par-

icipants was small and homogeneous, it is hard to generalize the

esults without further analyzing the domain in which the spread-

heets are being used.

.4.2. Inferences

This study was performed in a very specific setting which

akes it hard to generalize the results. The fact that a) the spread-

heets were based on real information provided by industrial part-

ers and b) Master students can be comparable to professionals

 Höst et al., 20 0 0) which creates the possibility that applying refac-

orings to a spreadsheet model can be useful, by reducing potential

rrors and increasing the productivity of professionals.

.5. Discussion

The results and analysis we present strongly suggest that refac-

orings have a positive impact on the usage of spreadsheets.

hese refactorings were inspired by the ones available for the

O paradigm, to which ClassSheets can be mapped (Cunha et al.,

012e).

Several researchers have proposed the detection of smells for

preadsheets (some also based on the OO realm) (Hermans et al.,

012; Pinzger et al., 2012; Cunha et al., 2012d; 2012a). Unfortu-

ately, they usually do not propose the corresponding refactorings

o eliminate the smells. Nevertheless, given the good results we

chieved in this study it is expected that other refactorings may

248 J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250

t

a

t

(

m

w

s

i

t

l

u

o

v

t

t

c

p

f

6

p

h

e

i

a

f

i

o

s

l

i

m

i

h

o

t

f

a

s

f

e

s

t

r

s

t

s

a

s

t

s

t

v
also improve the quality of spreadsheets (although empirical vali-

dation is required). Thus, this study design can and should be used

to evaluate other refactorings that may be proposed in the future.

Another interesting discussion includes the terms evaluated by

our study. With the amount of errors being a common issue in

spreadsheets, it is only natural to try to take that in account when

considering techniques for spreadsheets engineering and usage.

One cannot evaluate the amount of errors without consider-

ing the time it takes to accomplish a certain task. If one proposes

a technique that fully eliminates the errors but exponentially in-

creases the amount of time it takes to do the job, then such tech-

nique probably will not be accepted by spreadsheet users, or any

other users by that matter.

Finally, even improving users’ efficiency and effectiveness, the

new spreadsheet should engage users. Thus, it is crucial to evalu-

ate the overall user experience and acceptance of our technique. As

spreadsheets are naturally the end-users’ language of choice, that

is, the programming environment for non-professional program-

mers, their perspective is quite important.

Although we have shown that the refactorings we proposed can

be used to improve spreadsheets, as they in general specify spread-

sheet transformations, one may assume they may also be used

to produce not so good spreadsheets. Indeed this is also the case

for the refactorings available for other languages. Nevertheless. we

characterized the context in which they can/should be used to im-

prove spreadsheets.

5. Related work

After the popular book of Martin Fowler (Fowler, 1999) the con-

cepts of code smells associated with program refactorings became

widely used to improve the quality of software programs: code

smells give an indication of poor quality of the software source

code, in terms e.g. of its comprehensibility, while program refac-

torings are used to improve such perspective of quality. The main

goal of program refactoring is to improve the overall quality of the

software and not identify or to correct bugs/faults, nor to opti-

mize/improve the performance of a program.

Although refactorings aim at improving software quality, sev-

eral research studies show that they are not always effective in

their aim (Stroggylos and Spinellis, 2007; Alshayeb, 2009). In this

line, we have presented in this paper an empirical study that we

conducted in order to confirm that the catalog of ClassSheet refac-

torings we proposed earlier does improve the overall quality of

model-driven spreadsheet development.

Program refactorings have been widely applied/studied in dif-

ferent programming languages, like for example in C++ (Graf et al.,

2007), Haskell (Li and Thompson, 2008), Erlang (Li and Thomp-

son, 2012), and in software formalisms, like for example in soft-

ware product line variability (Borba, 2011), in software secu-

rity (Maruyama and Omori, 2011), in computer grammars (Kosar

et al., 2004), and in UML models (Sunyé et al., 2001).

In the context of program refactorings, there are several empir-

ical studies that validate their use by professional software engi-

neers (Cunha et al., 2015; Kim et al., 2012), or the use of refac-

torings by software engineers in evolving software systems (Kim

et al., 2011), or in inducing faults (Bavota et al., 2012), and in many

other software development areas. The validation of refactorings

in the context of (end-users) spreadsheet development has not re-

ceived the same research work. This paper presents a first empiri-

cal study of end-users using refactorings for model-driven spread-

sheets. Felienne’s et al. paper (Hermans, Pinzger, van Deursen,

2014) presents a qualitative empirical study evaluating refactoring

spreadsheet formulas by end-users. Our paper, however, presents

a study where end-users have to perform more end-user oriented
asks, that is to say, more spreadsheets specific tasks, like for ex-

mple, refactorings that involve layout operations.

There are also other works on applying program refactorings

o spreadsheets formulas. Of special mention is Badame and Dig

2012) , where the authors suggest a set of transformations to for-

ulas using an Excel plugin. The fundamental difference to our

ork is that the refactorings we propose are applied to the spread-

heet model, which being more concise, makes the reasoning eas-

er. WYSIWYG (Fisher II et al., 2002; Rothermel et al., 20 0 0) is a

ool for spreadsheet testing that helps users to find bugs and prob-

ems in spreadsheets. Contrary to our approach, this tool requires

ser input to find faults and works only individually on instances

f spreadsheets.

Hermans et al. (Hermans et al., 2012; Pinzger et al., 2012) have

arious works on spreadsheet smells. They sometimes refer refac-

orings for the smells they introduce, but they specially focus on

he detection of smells, not on their elimination. Their work is

omplementary to ours, as they focus on detecting spreadsheet

roblems and we, while sharing this same concern, have further

ocused in this work on solving some of them.

. Conclusions

In this paper we have built on previous work where we pro-

osed a set of refactorings for ClassSheet models, a formalism that

as been widely used in the context of model-driven spreadsheet

ngineering.

While based on our experience in this context we have argued

n the past that our refactorings provided better models, it is only

fter the work described in this paper that this argument has been

ully realized and extended to their instances.

We have designed and conducted an empirical study compar-

ng two scenarios: one where our refactorings are applied against

ne where they are absent. From the analysis of the obtained re-

ults, we have found statistical evidences that refactorings do al-

ow spreadsheet engineering productivity improvements. These ev-

dences are also substantiated with some qualitative data, of a

ore subjective interpretation, that we gathered from the partic-

pants of our study. Indeed, in most cases the study participants

ad a better experience working with the refactored versions.

We foresee several directions for future work, including a study

n the applications of the refactorings and a user’s experience with

hem. We tested variables that we consider of extreme importance

or analyzing spreadsheet usage, namely effectiveness, efficiency,

nd user acceptance. The fact is that there is not a definition for

preadsheet quality, similar to the one described in ISO/IEC 9126

or software, where functionality, reliability or maintainability, for

xample, are clearly defined. To evaluate the quality of a spread-

heet several aspects could have been chosen, from the quality of

he data itself, to the model complexity or readability. We are cur-

ently working on how well-known quality models can fit spread-

heets and how can quality be clearly defined. A first approach to

his is described in Cunha et al. (2013) .

We are also working on smells detection tools for spreadsheets,

uch as the one presented in Cunha et al. (2012a). This could be

dapted to automatically identify when a refactoring could and

hould be applied.

Acknowledgements

We would like to thank Paulo Azevedo and Miguel Goulão for

heir wise advise on the analysis and presentation of the study re-

ults. We would also like to thank Pedro Henriques for his class

ime, and his students that volunteered to participate in our study.

This work is part funded by the ERDF - European Regional De-

elopment Fund through the COMPETE Programme (operational

J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250 249

p

t

F

0

b

0

s

R

A

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

E

E

F

F

G

H

H

H

K

K

K

L

L

M

M

M

P

R

R

S

S

W
rogramme for competitiveness) and by National Funds through

he FCT - Fundação para a Ciência e a Tecnologia (Portuguese

oundation for Science and Technology) within project FCOMP-01-

124-FEDER-020484 . The first, third and fifth author were funded

y FCT : SFRH/BPD/73358/2010 , Project NORTE-07-0124-FEDER-

 0 0 062 and BI3-2013_PTDC/EIA-CCO/116796/2010_UMINHO , re-

pectively.

eferences

lshayeb, M. , 2009. Empirical investigation of refactoring effect on software quality.

Inf. Softw. Technol. 51 (9), 1319–1326 .
adame, S., Dig, D., 2012. Refactoring meets spreadsheet formulas. In: Proceedings

of the 2012 IEEE International Conference on Software Maintenance (ICSM).
IEEE Computer Society doi: 10.1109/ICSM.2012.6405299 .

avota, G. , De Carluccio, B. , De Lucia, A. , Penta, M.D. , Oliveto, R. , Strollo, O. , 2012.

When does a refactoring induce bugs? an empirical study. In: Source Code Anal-
ysis and Manipulation (SCAM), 2012 IEEE 12th International Working Confer-

ence on. IEEE, pp. 104–113 .
eckwith, L. , Cunha, J. , Fernandes, J.P. , Saraiva, J. , 2011. End-users productivity in

model-based spreadsheets: An empirical study. In: IS-EUD’11. Springer, Berlin
Heidelberg, pp. 282–288 .

orba, P. , 2011. An introduction to software product line refactoring. In: Proceedings

of the 3rd International Summer School Conference on Generative and Trans-
formational Techniques in Software Engineering III. Springer-Verlag, Berlin, Hei-

delberg, pp. 1–26 .
onway, D. , Ragsdale, C. , 1997. Modeling optimization problems in the unstructured

world of spreadsheets. Omega 25 (3) .
ook, T. , Campbell, D. , 1979. Quasi-experimentation: design & analysis issues for

field settings. Rand McNally College, Boston .
unha, J. , Fernandes, J.P. , Martins, P. , Mendes, J. , Saraiva, J. , 2012a. Smellsheet detec-

tive: a tool for detecting bad smells in spreadsheets. In: Visual Languages and

Human-Centric Computing. IEEE .
unha, J. , Fernandes, J.P. , Martins, P. , Pereira, R. , Saraiva, J. , 2014. Refactoring meets

model-driven spreadsheet evolution. In: Proceedings of the 9th International
Conference on the Quality of Information and Communications Technology,

Quality in Model Driven Engineering Track . To appear.
unha, J., Fernandes, J.P., Mendes, J., Pacheco, H., Saraiva, J., 2012b. Bidirectional

transformation of model-driven spreadsheets. In: Hu, Z., de Lara, J. (Eds.), The-

ory and Practice of Model Transformations. Springer, Prague, pp. 105–120. http:
//dx.doi.org/10.1007/978- 3- 642- 30476-7 _ 7 .

unha, J. , Fernandes, J.P. , Mendes, J. , Saraiva, J. , 2012c. MDSheet: a framework for
model-driven spreadsheet engineering. In: Proc. of the International Conference

on Software Engineering. IEEE .
unha, J., Fernandes, J.P., Mendes, J., Saraiva, J., 2013. Complexity metrics for spread-

sheet models. In: et al., B.M. (Ed.), The 13th International Conference on Com-

putational Science and Its Applications. LNCS, pp. 459–474. http://dx.doi.org/10.
1007/978- 3- 642- 39643- 4 _ 33 .

unha, J., Fernandes, J.P., Mendes, J., Saraiva, J., 2015. Embedding, evolution, and val-
idation of model-driven spreadsheets. IEEE Trans. Softw. Eng. 41 (3), 241–263.

doi: 10.1109/TSE.2014.2361141 .
unha, J., Fernandes, J.P., Ribeiro, H., Saraiva, J., 2012d. Towards a catalog of spread-

sheet smells. In: Proceedings of the 12th International Conference on Compu-

tational Science and Its Applications - Volume Part IV. Springer-Verlag, Berlin,
Heidelberg, pp. 202–216. doi: 10.1007/978- 3- 642- 31128-4 _ 15 .

unha, J. , Fernandes, J.P. , Saraiva, J. , 2012e. From relational ClassSheets to UML+OCL.
In: Proceedings of the Software Engineering Track at the 27th Annual ACM Sym-

posium On Applied Computing (SAC 2012). ACM, pp. 1151–1158 .
unha, J. , Mendes, J. , Fernandes, J.P. , Saraiva, J. , 2011. Embedding and evolution of

spreadsheet models in spreadsheet systems. In: VL/HCC’11. IEEE, pp. 186–201 .

unha, J. , Saraiva, J. , Visser, J. , 2009. From spreadsheets to relational databases and
back. In: Proc. of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and

Program manipulation .
inarsson, H.T., Neukirchen, H., 2012. An approach and tool for synchronous refac-
toring of UML diagrams and models using model-to-model transformations.

In: Proceeedings of the Fifth Workshop on Refactoring Tools. ACM doi: 10.1145/
2328876.2328879 .

ngels, G. , Erwig, M. , 2005. ClassSheets: automatic generation of spreadsheet
applications from object-oriented specifications. In: Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineering. ACM .
isher II, M. , Cao, M. , Rothermel, G. , Brown, D. , Cook, C. , Burnett, M. , 2002. Inte-

grating Automated Test Case Generation into the WYSIWYT Spreadsheet Testing

Methodology. Technical Report. Oregon State University, Corvallis, OR, USA .
owler, M. , 1999. Refactoring: Improving the Design of Existing Code. Addison-Wes-

ley .
raf, E., Zgraggen, G., Sommerlad, P., 2007. Refactoring support for the C++ develop-

ment tooling. In: Companion to the 22nd ACM SIGPLAN Conference on Object-
Oriented Programming Systems and Applications Companion. ACM, New York,

NY, USA, pp. 781–782. doi: 10.1145/1297846.1297885 .

ermans, F. , Pinzger, M. , van Deursen, A. , 2014. Detecting and refactoring code
smells in spreadsheet formulas. Empir. Softw. Eng. 20 (2), 549–575 .

ermans, F. , Pinzger, M. , Deursen, A.V. , 2012. Detecting and visualizing inter-work-
sheet smells in spreadsheets. In: Proceedings of the 2012 International Confer-

ence on Software Engineering. IEEE Press .
öst, M., Regnell, B., Wohlin, C., 20 0 0. Using students as subjects: a comparative

study of students and professionals in lead-time impact assessment. Empir.

Softw. Eng. 5 (3), 201–214. doi: 10.1023/A:1026586415054 .
im, M. , Cai, D. , Kim, S. , 2011. An empirical investigation into the role of API-level

refactorings during software evolution. In: Proceedings of the 33rd International
Conference on Software Engineering. ACM, pp. 151–160 .

im, M. , Zimmermann, T. , Nagappan, N. , 2012. A field study of refactoring challenges
and benefits. In: Proceedings of the ACM SIGSOFT 20th International Sympo-

sium on the Foundations of Software Engineering. ACM, p. 50 .

osar, T. , Mernik, M. , Zumer, V. , 2004. Jart: grammar-based approach to refactoring.
In: Proceedings of the 28th Annual International Computer Software and Appli-

cations Conference - Volume 01. IEEE Computer Society, Washington, DC, USA,
pp. 502–507 .

i, H., Thompson, S., 2008. Tool support for refactoring functional programs. In:
Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-based Program Manipulation. ACM, New York, NY, USA, pp. 199–203.

doi: 10.1145/1328408.1328437 .
i, H., Thompson, S., 2012. A domain-specific language for scripting refactor-

ings in Erlang. In: de Lara, J., Zisman, A. (Eds.), Fundamental Approaches to
Software Engineering. Springer Berlin Heidelberg, pp. 501–515. doi: 10.1007/

978- 3- 642- 28872- 2 _ 34 .
aier, D. , 1983. The Theory of Relational Databases. Computer Science Press .

aruyama, K., Omori, T., 2011. A security-aware refactoring tool for java programs.

In: Proceedings of the 4th Workshop on Refactoring Tools. ACM, New York, NY,
USA, pp. 22–28. doi: 10.1145/1984732.1984737 .

ens, T., Tourwe, T., 2004. A survey of software refactoring. IEEE Trans. Softw. Eng.
30 (2). http://doi.ieeecomputersociety.org/10.1109/TSE.2004.1265817 .

inzger, M. , Hermans, F. , van Deursen, A. , 2012. Detecting code smells in spread-
sheet formulas. In: Proceedings of the 2012 IEEE International Conference on

Software Maintenance. IEEE CS .
 Core Team, 2013. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. Vienna, Austria.

othermel, K.J. , Cook, C.R. , Burnett, M.M. , Schonfeld, J. , Green, T.R.G. , Rothermel, G. ,
20 0 0. WYSIWYT testing in the spreadsheet paradigm: an empirical evaluation.

In: Proceedings of the 22nd International Conference on Software Engineering.
ACM .

troggylos, K., Spinellis, D., 2007. Refactoring–does it improve software quality? In:
Proceedings of the 5th International Workshop on Software Quality. IEEE Com-

puter Society, Washington, DC, USA, pp. 10–. doi: 10.1109/WOSQ.2007.11 .

unyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M., 2001. Refactoring UML models.
In: Gogolla, M., Kobryn, C. (Eds.), UML 2001 — The Unified Modeling Language.

Modeling Languages, Concepts, and Tools. Springer Berlin Heidelberg, pp. 134–
148. doi: 10.1007/3- 540- 45441- 1 _ 11 .

ohlin, C. , Runeson, P. , Höst, M. , Ohlsson, M.C. , Regnell, B. , 2012. Experimentation
in Software Engineering. Springer .

http://dx.doi.org/10.13039/501100001871
http://dx.doi.org/10.13039/501100001871
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0001
http://dx.doi.org/10.1109/ICSM.2012.6405299
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0009
http://dx.doi.org/10.1007/978-3-642-30476-7_7
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0011
http://dx.doi.org/10.1007/978-3-642-39643-4_33
http://dx.doi.org/10.1109/TSE.2014.2361141
http://dx.doi.org/10.1007/978-3-642-31128-4_15
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0017
http://dx.doi.org/10.1145/2328876.2328879
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0021
http://dx.doi.org/10.1145/1297846.1297885
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0024
http://dx.doi.org/10.1023/A:1026586415054
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0028
http://dx.doi.org/10.1145/1328408.1328437
http://dx.doi.org/10.1007/978-3-642-28872-2_34
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0031
http://dx.doi.org/10.1145/1984732.1984737
http://doi.ieeecomputersociety.org/10.1109/TSE.2004.1265817
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0035
http://dx.doi.org/10.1109/WOSQ.2007.11
http://dx.doi.org/10.1007/3-540-45441-1_11
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30028-0/sbref0038

250 J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250

omputer science from Universidade do Minho, Portugal, in 2006. He received the PhD
y of Universidade Nova de Lisboa, where he is currently an assistant professor. His main

 he uses to improve software effectiveness, efficiency, and usability.

niversidade do Minho, Portugal, in 2004 (best of class). He received the PhD degree from

on of circular programs in 2009. In his research, he pursues rigorous ways to reason about

onal programming, spreadsheets, language engineering and bidirectional transformations,
r at the Informatics Department, Universidade da Beira Interior, Portugal.

d a PhD in 2014 for his work on embedded attribute grammars. His research interests

e analysis. He is currently a Post-doc researcher at the University of California.

is work on evolution of model-driven spreadsheets. He is currently working toward the
member of the ACM. His research interests include the areas of software engineering,

the MAPi doctoral programme. He received his MSc degree in software engineering and
ets” under the SpreadSheets as a Programming Paradigm (SSaaPP) project. He continued

orking on spreadsheet model quality, human-computer interaction, and software analysis
or the Real World”, a collaboration between Portugal and Germany, funded by FCT, and

oration between Portugal and the USA, funded by the FLAD foundation. He is currently

ant.

do Minho, Portugal, in 1993. He received the PhD degree in computer science from the
 Universidade do Minho where he is currently an assistant professor. His main research

 evolution.
Jácome Cunha received the Licenciatura degree (five years) in mathematics and c
degree in computer science from the same university in 2011. He joined the facult

research interests include software engineering and programming languages, which

João Paulo Fernandes has graduated in mathematics and computer science from U
the same university, following his work on the design, implementation and calculati

programming, which he has successfully been able to apply in the context of functi
and in the context of several research projects. Currently, he is an assistant professo

Pedro Martins received his MSc degree from Universidade do Minho in 2010, an

include the areas of, programming languages, functional programming, and softwar

Jorge Mendes received his MSc degree from Universidade do Minho in 2012 for h
PhD degree in the MAP-i Programme at Universidade do Minho. He is a student

programming languages, functional programming, and model-driven engineering.

Rui Pereira is a computer science PhD student at the University of Minho, under
business intelligence in 2013, with his thesis “Querying for Model-Driven Spreadshe

working on his MSc work, extending it further into other approaches, along with w
and transformation. He is a member of the bilateral project ”Spreadsheet Model f

the joint project “Towards Variational Software, Types, and Spreadsheets”, a collab

working on his PhD in the area of Green Software Analysis with an awarded FCT gr

João Saraiva received the MSc degree in computer science from the Universidade
University of Utrecht, The Netherlands, in 1999, and then joined the faculty at the

interests include programming languages, and software analysis, transformation and

	Evaluating refactorings for spreadsheet models
	1 Introduction
	2 Model-driven spreadsheets
	3 Model-driven spreadsheets refactoring
	3.1 Refactorings as evolution steps
	3.2 Move formula
	 Feature envy
	 Refactoring
	 Evolution

	3.3 Move attribute
	 When/Why
	 Refactoring
	 Evolution

	3.4 Extract class
	 When/Why
	 Refactoring
	 Evolution

	3.5 Inline class
	 When/Why
	 Refactoring
	 Evolution

	3.6 Remove middle-man
	 When/Why
	 Refactoring
	 Evolution

	3.7 Refactored example

	4 Empirical validation
	4.1 Design
	4.1.1 Hypotheses
	4.1.2 Variables
	4.1.3 Subjects and objects
	4.1.4 Design
	4.1.5 Instrumentation
	4.1.6 Data collection procedure
	4.1.7 Analysis procedure and evaluation of validity

	4.2 Execution
	4.3 Analysis
	4.3.1 Descriptive statistics
	4.3.2 Hypothesis testing

	4.4 Interpretation
	4.4.1 Threats to validity
	4.4.2 Inferences

	4.5 Discussion

	5 Related work
	6 Conclusions
	 Acknowledgements
	 References

