
The Journal of Systems and Software 161 (2020) 110463

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

SPELLing out energy leaks: Aiding developers locate energy inefficient

code

Rui Pereira

a , b , ∗, Tiago Carção

a , Marco Couto

a , Jácome Cunha

c , João Paulo Fernandes d ,
João Saraiva

a

a HASLab/INESC Tec & Universidade do Minho, Portugal
b C4 – Centro de Competências em Cloud Computing (C4-UBI), Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, Covilhã 6201-001, Portugal
c NOVA LINCS & Universidade do Minho, Portugal
d CISUC & Universdade de Coimbra, Portugal

a r t i c l e i n f o

Article history:

Received 16 November 2018

Revised 30 September 2019

Accepted 16 November 2019

Available online 18 November 2019

Keywords:

Green Software

Program Analysis

Program Optimization

Green Computing

Fault Localization

a b s t r a c t

Although hardware is generally seen as the main culprit for a computer’s energy usage, software too has

a tremendous impact on the energy spent. Unfortunately, there is still not enough support for software

developers so they can make their code more energy-aware.

This paper proposes a technique to detect energy inefficient fragments in the source code of a software

system. Test cases are executed to obtain energy consumption measurements, and a statistical method,

based on spectrum-based fault localization, is introduced to relate energy consumption to the source

code. The result of our technique is an energy ranking of source code fragments pointing developers to

possible energy leaks in their code. This technique was implemented in the SPELL toolkit.

Finally, in order to evaluate our technique, we conducted an empirical study where we asked participants

to optimize the energy efficiency of a software system using our tool, while also having two other groups

using no tool assistance and a profiler, respectively. We showed statistical evidence that developers using

our technique were able to improve the energy efficiency by 43% on average, and even out performing a

profiler for energy optimization.

© 2019 Elsevier Inc. All rights reserved.

1

o

a

r

v

w

a

i

e

e

l

2

V

j

2

t

a

i

e

a

2

a

e

o

w

h

w

i

h

0

. Introduction

To detect inefficiency at runtime, many programming languages

ffer advanced profilers which locate source code fragments which

re possibly responsible for such inefficiencies. In the same line of

easoning, while IDEs have traditionally incorporated powerful ad-

anced type and modular systems, testing and debugging frame-

orks, and other tools to improve softwaredevelopers productivity

nd effectiveness, there is no concrete evidence that this trend has

ncluded techniques to optimize or even analyze source code en-

rgy consumption (Pinto et al., 2014a; Pang et al., 2016).

In fact, software developers are keen on developing energy-

fficient software (Pinto et al., 2014a; Pang et al., 2016), and a

ong list of (mostly recent) effort s that include (Ferreira et al.,

013; Pinto et al., 2014b; Yuki and Rajopadhye, 2014; Linares-

ásquez et al., 2014; Jabbarvand et al., 2015; 2016; Sahin et al.,
∗ Corresponding author at: HASLab/INESC TEC, Universidade do Minho, Portugal.

E-mail addresses: ruipereira@di.uminho.pt (R. Pereira), tcarcao@di.uminho.pt

(T. Carção), marco.l.couto@inesctec.pt (M. Couto), jacome@di.uminho.pt (J. Cunha),

pf@dei.uc.pt (J.P. Fernandes), saraiva@di.uminho.pt (J. Saraiva).

c

f

2

c

a

ttps://doi.org/10.1016/j.jss.2019.110463

164-1212/© 2019 Elsevier Inc. All rights reserved.
014; Hindle, 2015a; Li and Mishra, 2016; Lima et al., 2016) have

ried to provide developers with the libraries, tools, techniques

nd data to support energy-aware development. Even consider-

ng these effort s, the green computing research area is still at an

arly stage where research issues, challenges and opportunities

bound (Trefethen and Thiyagalingam, 2013; Lago, 2015; Hindle,

015b). Researchers (Pinto and Castor, 2017; Manotas et al., 2016)

lso argue that there are two main problems in regards to energy

fficient software development: the lack of knowledge and the lack

f tools .

Indeed, if we compare energy-aware software engineering

ith the long lasting series of engineering techniques that aim at

elping software developers quickly construct correct programs

ith optimal runtime we see an obvious deficit. While the latter

ncludes compiler constructions such as partial and/or runtime

ompilation, advanced garbage collectors or parallel execution, the

ormer is still clearly more modest in terms of achievements (Lago,

015).

In the same line of reasoning, while IDEs have traditionally in-

orporated powerful advanced type and modular systems, testing

nd debugging frameworks, and other tools to improve software

https://doi.org/10.1016/j.jss.2019.110463
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.110463&domain=pdf
mailto:ruipereira@di.uminho.pt
mailto:tcarcao@di.uminho.pt
mailto:marco.l.couto@inesctec.pt
mailto:jacome@di.uminho.pt
mailto:jpf@dei.uc.pt
mailto:saraiva@di.uminho.pt
https://doi.org/10.1016/j.jss.2019.110463

2 R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463

a

i

t

e

w

o

C

a

e

m

f

t

t

c

t

w

o

p

m

p

i

S

2

t

l

e

l

m

e

p

d

S

a

i

p

f

a

c

e
developers productivity and effectiveness, there is no concrete evi-

dence that this trend has included techniques to optimize or even

analyze source code energy consumption (Pinto et al., 2014a; Pang

et al., 2016).

This paper defines a technique, named SPELL – SPectrum-based

Energy Leak Localization, that has been implemented in a tool,

to determine red (energy inefficient) areas in software. The idea

of this approach has been previously proposed in (Pereira, 2018;

Pereira et al., 2017a; Pereira, 2017). In this paper, we consider an

energy leak synonymous to an energy inefficiency. In this context,

a parallel is made between the detection of anomalies in the en-

ergy consumption of software during program execution, and the

detection of faults in the execution of a program. Having this par-

allelism established, we adapted fault detection techniques, often

used to investigate software bugs in program executions, to detect

energy faults in programs.

The software system to be analyzed is executed with a set of

test cases, and components of such system (for example, pack-

ages, functions, loops, etc.) are instrumented to estimate/measure

the energy consumption at runtime. Inefficient energy consump-

tion, the so-called energy leaks, are interpreted in SPELL as pro-

gram faults, and we adapt Spectrum-based Fault Localization (SFL)

techniques (Abreu et al., 20 09; 20 07) to relate energy consumption

to the system’s source code. Our analysis associates different per-

centage of responsibility for the energy consumed to the different

components of the underlying system. Thus, the result of our anal-

ysis is a ranking of components sorted by their likelihood of being

responsible for energy leaks, essentially pinpointing and prioritiz-

ing the developer’s attention on the most critical red spots in the

analyzed system. Thus, giving more useful information to have bet-

ter support in making decisions of what parts of the system need

to be optimized, ultimately helping place a new stepping stone for

energy-aware programming.

Our proposed technique is language independent, allowing the

analysis of programs written in any programming language. Cur-

rently, it has been developed and focused on desktop and server

systems only. A slight adaptation would be required to extend it

into the mobile phone domain. Additionally, it is also context in-

dependent, allowing it to be applied to detect red areas on vari-

ous levels of code. This means we could use it to detect the inef-

ficiencies at different granularity levels, be that packages, classes,

methods, functions, lines of code, etc. Even more so, the technique

allows the use of different hardware component’s energy values

(CPU, DRAM, HDD, GPU, etc.) to compute the energy spent by a

program, and may return the analysis of one specific factor (en-

ergy, time, or frequency of usage), or a global analysis considering

all three factors.

Supported by our tool, our technique was able to identify po-

tential energy leaks in the source code of concrete Java projects.

Based on this identification, a set of expert Java programmers were

then asked to improve the (energy) efficiency of those projects.

The analysis of their success in doing so provided statistical evi-

dence that the programs they ended up altering indeed consume

less energy that the ones they were originally given, with an im-

provement, for different projects, between 15% and 74%.

Complementary, we compared the energy efficiency of the pro-

grams obtained as explained above against programs obtained

from the original ones but by programmers working without the

knowledge of any energy leak. From such comparison, we found

statistical evidence that the difference is significant, in favor of the

former: their performance is between 14% and 38% better.

A recurrent debate when optimizing energy consumption in

software is whether a performance optimization is always an

energy consumption optimization. Indeed, the Energy equa-

tion (Energy = Power × Time) does indicate that reducing

time would imply a reduction in energy. However, the Power vari-
ble of the equation, not to be assumed as a constant, also has an

mpact alongside Time . Therefore, conclusions regarding this issue

end to diverge, where some works do support that optimizing for

nergy is optimizing for performance (Yuki and Rajopadhye, 2014),

hile many others have studied contexts where the opposite was

bserved (Pinto et al., 2014b; Trefethen and Thiyagalingam, 2013;

outo et al., 2017; Lima et al., 2016; Lorenzo et al., 2015; Kambadur

nd Kim, 2014; Li et al., 2013; Abdulsalam et al., 2015; Pereira

t al., 2016; 2017b). This suggests that only looking at performance

ight not be enough for optimizing energy, and consequently per-

ormance profilers might also not be enough. Indeed we will show

his is the case in Section 4 .

In order to shed light and contribute to this debate with a par-

icular focus on our context, we have complementary analyzed and

ompared our tool with an off the shelf profiler. This means that

he experts were asked to improve the efficiency of the projects

e considered with the guidance of SPELL and with the guidance

f such profiler. Our analysis provided statistical evidence that ex-

erts with access to located energy leaks were able to better opti-

ize the energy consumption of those projects than when using a

rofiler, with improvements between 2% and 72%.

The contributions of this paper are essentially four-fold:

• A language independent technique to locate energy inefficient

components in the source code of software systems. This tech-

nique is also independent of the approach used to measure (via

external devices Ferreira et al., 2013; Hähnel et al., 2012; Rotem

et al., 2012) or estimate (via predictive models Liqat et al., 2013;

Noureddine et al., 2015) energy consumption (Section 2).
• An implementation of our technique as a Java-based analysis

tool (Section 3).
• An implementation of two (optional) auxiliary tools to facili-

tate: the energy measurements on Java programs (based on In-

tel’s Runtime Average Power Limit (RAPL) technology Dimitrov

et al., 2015; Hähnel et al., 2012), and the SPELL matrix construc-

tion. These are provided within the SPELL Toolkit along with

the Java implementation of SPELL itself (Section 3).
• An evaluation of our technique and tool by detecting energy

leaks in an empirical study. Programmers following SPELL rec-

ommendations were able to optimize programs to have energy

gains of 43% on average (Section 4).

Furthermore, we discuss an overview of related research work

n Section 5 , and conclude our paper with final comments in

ection 6 .

. Spectrum-based energy leak localization

In this section we present our language independent technique,

ermed SPELL – or Spectrum-based Energy Leak Localization – that

ocalizes red areas in source code. This technique combines en-

rgy measurements, program tracing, and a state-of-the-art fault

ocalization technique, to detect source code components (such as

ethods) which are more likely to be responsible for abnormal or

xcessive energy consumptions. It follows a dynamic-oriented ap-

roach, i.e., it collects information of the software under analysis

uring its execution under normal usage scenarios or test cases.

We divided the definition of the technique into 4 parts. First, in

ection 2.1 , we thoroughly explain the fault localization concepts

nd the Spectrum-based Fault Localization technique (SFL). Build-

ng on such concepts, we then detail in Section 2.2 the changes

erformed to the core components of SFL, in order to collect in-

ormation for each test/usage scenario regarding program tracings

nd energy consumption. Next, we define in Section 2.3 our con-

epts for how to analyze such information and reason about the

nergy impact of each source code component. Finally, to facilitate

R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463 3

t

i

t

2

t

d

c

i

s

A

c

d

b

c

e

i

w

t

E

o

T

e

e

v

e

l

(

v

s

n

p

i

c

i

O

t

f

c

i

f

s

l

c

p

2

a

c

t

b

o

n

c

c

E

i

e

c

e

(

u

o

2

u

i

r

d

s

w

s

C

c

r

c

o

w

t

t

t

c

1 For a complete example please refer to Section 2.4 .
he explanation of our technique, we present a concrete example

n Section 2.4 , with all steps detailed.

Additionally, our technique is implemented within a Java

oolkit, called the SPELL toolkit, which is presented in Chapter 3 .

.1. Spectrum-based fault localization

Our technique is based on spectrum-based fault localiza-

ion (Abreu et al., 20 09; 20 07), a statistical analysis technique to

etect faults in a program based on its implementation (source

ode).

In particular, SFL uses a hit spectrum (set of flags which reflect

f a certain component is used or not in a particular run of the

oftware) (Abreu et al., 2009; Passos et al., 2015) to build a matrix

 of dimension n × m , where m columns represent the different

omponents (e.g. methods, classes) of a program during n indepen-

ent test executions. A component can be anything being analyzed,

e this a program, a package, a class, a method, or even a line of

ode. An entry a i , j in A of value 0 means that component j was not

xecuted in test execution i , and an entry of value 1 means that

t was. Complementing the hit spectrum, SFL also uses a vector e ,

ith n elements, each of which indicates whether each of the n

ests succeeded or not.

Eq. (1) illustrates the generic format of A and e , and

q. (2) presents a concrete (simulated) example of the application

f SFL with 3 test cases executed on a program with 4 components.

he first line of the matrix A in the example, e.g., reads as: in the

xecution of the first test case, components c 1 , c 2 and c 4 were ex-

cuted and component c 3 was not. The first element of e , i.e., the

alue 0, indicates that the execution of the first test case met its

xpected output (or in other words, that it did not fail).

m components error detection

n spectra

⎡

⎢ ⎢ ⎣

a 1 , 1 a 1 , 2 · · · a 1 ,m

a 2 , 1 a 2 , 2 · · · a 2 ,m

. . .
. . .

. . .
. . .

a n, 1 a n, 2 · · · a n,m

⎤

⎥ ⎥ ⎦

⎡

⎢ ⎢ ⎣

e 1
e 2
. . .

e n

⎤

⎥ ⎥ ⎦

(1)

[

1 1 0 1

1 0 1 1

1 0 1 0

] [

0

1

1

]

(2)

Using (A , e), SFL tries to find which components are the most

ikely to be faulty by calculating: n 11 (j): the number of failed runs

indicated by the second 1 subscript) where component j was in-

olved (indicated by the first 1 subscript); n 10 (j): the number of

uccessful runs in which component j was involved; and n 01 (j): the

umber of failed runs where component j was not involved. This

roduces a 3 × m matrix N , where m is the number of components

n the program, and whose first/second/third line holds, for each

omponent j ∈ { 1 , . . . , m } , n 11 (j), n 10 (j) and n 01 (j), respectively.

Eq. (3) shows the generic formulation of N and Eq. (4) shows

ts instance for the illustration in Eq. (2) . Finally, SFL applies the

chiai coefficient of similarity (Eq. (5)) to each component j ∈ [1.. m]

o indicate which component has the highest probability of being

aulty. This produces the matrix S given in Eq. (6) .

m components [

n 11 (1) n 11 (2) · · · n 11 (m)
n 10 (1) n 10 (2) · · · n 10 (m)
n 01 (1) n 01 (2) · · · n 01 (m)

]

(3)

[

2 0 2 1

1 1 0 1

0 2 0 1

]

(4)

S j =

n 11 (j) √

(n 11 (j) + n 01 (j)) · (n 11 (j) + n 10 (j))
(5)
4 components

S
[
0 . 82 0 . 0 1 . 0 0 . 5

] (6)

Analyzing the elements of matrix S , we finally conclude that

omponent 3 is the most likely to be faulty. The rationale for this

s that such component was involved in all the test executions that

ailed and was not involved in the test execution that succeeded.

In our proposed technique, that we introduce in the following

ubsections, we also rely on the spectrum of a program, which al-

ows us to discriminate the usage of each component, and in what

ases it was used, further extracting more information of the com-

onents being analyzed.

.2. Static model formalization

Similarly to SFL, the technique that we propose, SPELL, relies on

n input matrix A , with dimension n × m , where the n lines also

orrespond to the number of test executions, and the m columns

o the number of components. 1 It is very important to note that

y test we mean test scenarios which replicate a real-world usage

f the application, i.e., system tests. The quality of the tested sce-

arios is also important because only with tests which stress the

omponents with different inputs replicating real-world scenarios,

an one extract reliable information.

Differently to SFL, however, elements of A actually hold triples.

ach such element λi , j is defined as follows: {
(0 , 0 , 0) , if component j was not executed in test i ;
(E i, j , N i, j , T i, j) , otherwise .

The execution data of each component is therefore segmented

n 3 categories: E for energy consumption, N for the number of

xecutions and T for the execution time.

In the energy consumption category, E , values of the energy

onsumed by different hardware components may be present, for

xample: CPU (E CPU), DRAM (E DRAM

), fans (E fans), HDD (E disk), GPU

 E GPU), etc. At least one hardware component must be present.

The energy consumption values are expressed in the energy

nit Joules (J), and the execution time is represented in millisec-

nds (ms). Finally, N holds the number of executions (cardinality).

.3. Energy leak localization

Now that we have our spectrum model, we can begin extracting

seful information and localizing the energy leaks.

While in SFL there is an error vector to reason about the valid-

ty of the output obtained by a test, the SPELL analysis does not

eceive an error vector. This is because there is still no known un-

erstanding to signal what can be seen as an excess of energy con-

umption. Therefore, an error vector needs to be calculated, and

e define two different perspectives to calculate error vectors and

imilarities. These perspectives, that we describe next, are called

omponent Category Similarity and Global Similarity . An interesting

onsideration to draw here is that use of the error vector cannot

esult in a binary decision (pass or fail) for a test execution; the

riterion has to use continuous values to represent the greenness

f a test.

Component Category Similarity. The construction of this oracle

as based on the regulation of greenhouse gas emissions for coun-

ries. After assessing how much is the total emission of gases in

he different years, and depending on what each country con-

ributed to these total emissions, each country is assigned a per-

entage of responsibility. We try to establish an analogy, where the

4 R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463

Table 1

Average W consumption for hardware components.

Component name Average power consumption (W)

CPU 102.5

DRAM 3.75

Fans 3.3

Hard drive 7.5

GPU 187.5

p

e

a

m

a

p

a

p

c

c

p

w

c

t

i

t

a

t

t

w

p

w

t
n years are the different tests, and the m countries are the differ-

ent components with the total for each category (energy, cardinal-

ity, and execution time), with the goal of assigning responsibilities

to each component comparing with the total value.

To construct the error vector, we sum up all the values of all

m components for each test i ∈ { 1 , . . . , n } , shown in the following

equation:

e i =

(

m ∑

j=1

E i, j ,

m ∑

j=1

N i, j ,

m ∑

j=1

T i, j

)

(7)

As this is applied for all tests, we obtain Eq. (8) , a vector of triples

called e : 2

e = [e 1 e 2 . . . e n]
T (8)

With (A , e) at hand, we now have an oracle model, and can

begin localizing the energy leaks. Continuing our analogy of gas

emissions, we need to relate the (3-category) data of each com-

ponent with the total data. This is achieved comparing each com-

ponent in A with e . The main goal is to obtain a simple structure

containing the similarity between each column j ∈ { 1 , . . . , m } in A

(which refers to the resources spent by component j) and vector

e (the total amount of resources that were spent). This similarity

can be interpreted as how much component j is responsible for

each execution information of the total vector.

Assuming that A (j) projects column j from matrix A , the simi-

larity between component j and e is defined as φj , where:

φ j = (α1 (A (j) , e) , α2 (A (j) , e) , α3 (A (j) , e)) (9)

Finally, assuming that for x ∈ {1, 2, 3}, 3 A (j , x) and e (x) project

the x th element from all the triples of A (j) and e , respectively, we

define:

αx (A (j) , e) =

∑ n
i =1 A (j, x) i ∑ n

i =1 e (x) i
(10)

To calculate the Ochiai coefficient similarity, we need to now

be able to distinguish between a passed and a failed test. As pre-

viously stated, we cannot binarily define excess energy consump-

tion. Thus, for this formula, we focused on the Jaccard similarity

coefficient (Real and Vargas, 1996). This coefficient is well-known

and widely used to calculate the similarity coefficient between two

vectors and has been used for a long period of time in the biol-

ogy domain (Dombek et al., 20 0 0; Rousseau, 1998), and is one of

the most simple coefficients to implement. Using this definition,

we calculate the similarity coefficient for each of the component’s

constituents E , N and T .

Applying this similarity function to all components j ∈
{ 1 , . . . , m } will result in a row vector which represents, for each

component and each test execution, their influence in the overall

context for a given perspective (E , N or T). The higher the similarity

(the closer it is to 1) the more responsible it is in that category.

Global Similarity. Using the similarity of each component cat-

egory, we can have a parametrized analysis. However, it is also

useful to have a value encoding the global similarity, allowing a

numerical and global comparison between the different compo-

nents.

The energy category E of a software component j can con-

tain information on different hardware components such as CPU ,

DRAM , GPU , fans , and disk . These hardware components have dif-

ferent power consumption patterns that are known in advance.

So, this information should be standardized according to the spon-

taneity/variation of those hardware components.

Let us assume the following scenario:
2 We use superscript T as the transpose of a matrix.
3 Here, indexes 1, 2 and 3 represent E, N and T, respectively.

• For a concrete test suite, software components 1 and 2 showed

the same total energy consumption.
• However, they rely differently on hardware components A and

B, wherein A on average consumes more power than B.
• The energy of component 1 is only due to the use of compo-

nent A.
• The energy of component 2 is only due to the use of compo-

nent B.

In spite of having the same consumption value, software com-

onents 1 and 2 should have their global similarity value influ-

nced in different ways. As hardware component A has a higher

verage power consumption, component 1 is likely to contribute

ore to energy consumption than component 2 in scenarios that

re not captured by the test suite in use.

A multiplicative factor can be defined for each hardware com-

onent and applied to allow standardization. Table 1 details the

verage power consumption for each component. 4

Observing, e.g., that CPU is responsible for 34% of the total

ower consumption on average, for each test i ∈ { 1 , . . . , n } and

omponent j ∈ { 1 , . . . , m } we propose the formula:

EF i, j = 0 . 34 × E CPU i, j
+ 0 . 01 × E DRAM i, j

+ 0 . 01 × E fans i, j

+ 0 . 02 × E disk i, j
+ 0 . 62 × E GPU i, j

(11)

Note this formula can be rewritten to account for any other

ombination of hardware parts (e.g., include a screen of a smart-

hone).

Now we can calculate the global value for each component:

global c (j) = [g c (1 , j) g c (2 , j) . . . g c (n, j)] T (12)

here

g c (i, j) = EF i, j × N i, j × T i, j (13)

This global value takes into consideration not only the energy

onsumption of a component, but the cardinality and execution

ime all as one value. This allows us to have a better understand-

ng of what are the most important components to look at and try

o optimize. For example, a component A may consume twice the

mount of energy of component B, but component B is used five

imes as often which might make it a good candidate to prioritize

he attention on. This would give a weight to component B as it

ould seem to be a core part of the analyzed program.

Once we have the global values for each component, we can

roceed to calculate the global error vector as:

global e = [g e (1) g e (2) . . . g e (n)] T (14)

here

g e (i) =

m ∑

j=1

g c (i, j) (15)

Finally, we apply the similarity function α to each component j

o obtain the global similarity with the error vector, defined as ψ ,

ψ(j) = α(global (j) , global) (16)
c e

4 http://www.buildcomputers.net/power-consumption-of-pc-components.html

http://www.buildcomputers.net/power-consumption-of-pc-components.html

R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463 5

Fig. 1. Pseudo-code for the parking example.

w

1

g

g

m

2

h

e

t

a

e

m

W

c

c

o

fi

r

m

t

u

t

m

a

i

w

g

v

a

a

b

m

i

t

t

p

m

n

g

t

p

g

i

t

g

t

i

g

s

p

s

a

t

i

p

c
here

α(c, e) =

∑ n
i =1 c i ∑ n
i =1 e i

(17)

Once again, the higher the similarity value, and closer it is to

, the more responsible it is. We can rank the components by this

lobal similarity and have initial indicators of where in the pro-

ram we should prioritize our attention on, and which are the

ost important components to optimize.

.4. An example

To understand how the SPELL analysis works and see how it

andles the execution data, we present in the following a concrete

xample: a simple parking management system, containing 4 func-

ionalities (add a car, add a list of cars, search for the oldest car,

nd sort cars by registration date). A code snippet expressing this

xample is depicted in Fig. 1 .

Considering that we want to perform the analysis at the

ethod level, our software components will then be the methods.

e consider four different methods/components: adding several

ars at the same time, adding a single car, finding the oldest

ar, sorting the list of cars by registration date, and finding the

ldest car after the list of cars is sorted. We can also consider

ve different test suites, each roughly simulating different (yet

epresentable) usage scenarios for this program based on our

ethods/components.

We instrumented this program in order to collect, for each test,

he energy consumed by each method (using RAPL). It also allowed

s to obtain the usage frequency of each method, and its execution

ime. Therefore, after running the test suite, we can use the infor-

ation of this program’s execution and start the analysis.

We can see the entire model of the SPELL analysis for our ex-

mple defined in Table 2 , but let us construct it step by step. The

nput data can be seen in the top left 5 ∗4 matrix shown in Table 2 ,

here each component and each test has a triple of three cate-

ories. This triple contains the CPU and DRAM energy consumption

alue, the number of times that software component was used,

nd the execution time: (

E CPU , E DRAM

N

T

)
In this case, the only hardware components shown are the CPU

nd DRAM for the sake of simplicity of presenting our technique,

ut it still straightforwardly applies if energy consumption infor-

ation of more hardware components is available.

Similarity by component’s category. Having these inputs defined

n SPELL, we will first calculate the software component similari-

ies. We begin by building the error (e vector). To do so, for each

est, we sum all the values of each individual category of the com-

onent data. This is shown on the right hand side of our example

atrix under the e column. Next, we calculate each of the compo-

ent’s category similarity. For example, for the (CPU) energy cate-

ory of component c 1 we will have the following:

α1 (A (c 1) , e) =

2 . 57 + 1 . 48 + 1 . 46 + 1 . 22 + 2 . 49

11 . 64 + 9 . 27 + 9 . 65 + 3 . 1 + 14 . 66

= 0 . 191

This would be applied for the both DRAM energy category and

he other two categories, and for each of the other components,

roducing the results seen in the similarity by component’s cate-

ory row φ in Table 2 .

Global similarity. For the global similarity, we begin by calculat-

ng the global values of each component, and afterwards our new

otal global value vector. We obtain values global c (1) and global e :

global c (1) = [3722 . 1888 609 . 6 760 . 912 445 . 1776 3976 . 686] T

global e = [26972 . 3683 53533 . 0614 75171 . 9579 826 . 8864

98098 . 2886] T

Finally, we use the coefficient similarity ψ(1), to obtain the

lobal similarity value for component c 1 of 0.0375. Applying this

o each component, we obtain the results under the global similar-

ty ψ .

Analysis. Having all the needed information to analyze this pro-

ram we begin extracting useful information. Reading the global

imilarity values (ψ), we can see which component has the highest

robability of having an energy leak with the order of addCar (with

imilarity of 0.4970), sort (with 0.4061), oldestCar (with 0.0594),

nd finally addCars (with 0.0375). This indicates to the developer

hat he should first consider looking into method addCar to try to

mprove the energy consumption of this program.

An advantage of this technique, which highlights the com-

lementary perspectives of the two types of similarities that we

onsider, is that it can tell, besides having a global view of the

6 R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463

Table 2

SPELL matrix built for the example program.

addCars Sort addCar oldestCar e global e

t 1

⎛

⎝

{ 2 . 57 , 0 . 74 }
16

264 . 0

⎞

⎠

⎛

⎝

4 . 43 , 2 . 26

9

692 . 0

⎞

⎠

⎛

⎝

0 . 49 , 0 . 07

808

47 . 0

⎞

⎠

⎛

⎝

4 . 13 , 2 . 34

8

638 . 0

⎞

⎠

⎛

⎝

{ 11 . 64 , 5 . 43 }
1641 . 0

841 . 0

⎞

⎠ 26972.3683

t 2

⎛

⎝

{ 1 . 4 8 , 0 . 4 8 }
8

150 . 0

⎞

⎠

⎛

⎝

3 . 86 , 1 . 72

14

531 . 0

⎞

⎠

⎛

⎝

0 . 92 , 0 . 13

1612

76 . 0

⎞

⎠

⎛

⎝

3 . 00 , 1 . 62

10

414 . 0

⎞

⎠

⎛

⎝

{ 9 . 27 , 3 . 97 }
1171 . 0

1644 . 0

⎞

⎠ 53533.0614

t 3

⎛

⎝

{ 1 . 46 , 0 . 42 }
10

152 . 0

⎞

⎠

⎛

⎝

6 . 02 , 2 . 41

14

672 . 0

⎞

⎠

⎛

⎝

1 . 13 , 0 . 18

1626

87 . 0

⎞

⎠

⎛

⎝

1 . 02 , 0 . 40

2

110 . 0

⎞

⎠

⎛

⎝

{ 9 . 65 , 3 . 43 }
1021 . 0

1652 . 0

⎞

⎠ 75171.9579

t 4

⎛

⎝

{ 1 . 22 , 0 . 36 }
8

133 . 0

⎞

⎠

⎛

⎝

0 . 56 , 0 . 20

2

61 . 0

⎞

⎠

⎛

⎝

0 . 16 , 0 . 02

160

13 . 0

⎞

⎠

⎛

⎝

1 . 14 , 0 . 50

4

150 . 0

⎞

⎠

⎛

⎝

{ 3 . 10 , 1 . 11 }
357 . 0

174 . 0

⎞

⎠ 826.8864

t 5

⎛

⎝

{ 2 . 49 , 0 . 64 }
18

259 . 0

⎞

⎠

⎛

⎝

8 . 16 , 4 . 19

17

1346 . 0

⎞

⎠

⎛

⎝

0 . 66 , 0 . 10

1418

82 . 0

⎞

⎠

⎛

⎝

3 . 33 , 1 . 64

6

468 . 0

⎞

⎠

⎛

⎝

{ 14 . 66 , 6 . 59 }
2155 . 0

1459 . 0

⎞

⎠ 98098.2886

φ

⎛

⎝

{ 0 . 191 , 0 . 129 }
0 . 0104

0 . 151

⎞

⎠

⎛

⎝

{ 0 . 477 , 0 . 527 }
0 . 0097

0 . 5204

⎞

⎠

⎛

⎝

{ 0 . 070 , 0 . 025 }
0 . 9747

0 . 0481

⎞

⎠

⎛

⎝

{ 0 . 262 , 0 . 318 }
0 . 0052

0 . 2805

⎞

⎠

ψ 0.0375 0.4061 0.4970 0.0594

Fig. 2. SPELL tool-kit contents overview.

a

s

c

s

t

t

e

s

t

5 GitHub: https://github.com/greensoftwarelab/SPELL .
component, indicators of why the component is faulty. For exam-

ple, addCar is given the highest global similarity value, and sort the

second highest. If we now look into their category similarity values

(φ), we can see that although the former has the lowest (CPU

and DRAM) energy similarity (0.070 and 0.025), it has the highest

cardinality similarity by far (0.9747); the latter, however, has the

highest energy similarity (0.477 and 0.527), but the second lowest

cardinality similarity (0.0097). Even though sort has a higher

impact in terms of energy consumption when compared to addCar ,

addCar is almost a core component of this example program, with

a much higher usage than sort which ends up contributing to high

energy consumption over the course of the program’s lifecycle.

If the developer is only interested in optimizing purely for en-

ergy efficiency, sort would be the best place to start looking at. On

the other hand, if the developer cares equally about all three cat-

egories, addCars should be looked at first according to our global

similarity analysis.

We argue that when choosing the software component levels,

the user must decide if they prefer a much more precise analysis,

trading off performance, or the opposite.

Choosing the software component level to be analyzed will

come at a trade-off of precision vs. performance. If the user has

an idea of where a problem might be, they can focus their atten-

tion on a certain portion of the code. On the other hand, we ar-

gue that if the user has no clear indication of where to start, they

should begin by package or class level components (based on pro-

gram size), and continue to “drill-down” into finer granularity lev-

els very much like how a profiler is to be traditionally used.

3. SPELL toolkit

As previously stated, our technique is language independent,

where the only required input is a matrix representing the tests,

components, and categories. As a proof of concept we have im-

plemented the SPELL technique in Java. To use SPELL in detecting

energy leaks in software applications, we also provide two aux-

iliary (language dependent) tools which help automate the energy

measurements within a Java program (using Intel’s RAPL), and con-

struct the SPELL matrix based on the measured outputs.

As the SPELL technique itself is language independent, one may

easily develop front-end tools for other languages to measure the

energy consumption and/or generate the SPELL matrix to run the
nalysis. Our core tool, and its two supporting tools are open

ource, and provided together within the SPELL toolkit. The toolkit 5

ontains more information on how to run the tools, and the repre-

entation of the input and output data of each. An overview of the

ools (solid blocks) within the SPELL toolkit is shown in Fig. 2 .

Instrumentation and energy measurements. The first auxiliary

ool in the tool-kit, Instrumentation , consists of an out-of-the-box

nergy monitoring instrumentation tool which automatically in-

truments the source code of each method in a class with calls

o the API of a Java energy estimation framework during the

https://github.com/greensoftwarelab/SPELL

R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463 7

b

r

w

s

a

(

j

c

(

s

t

t

e

m

o

a

2

e

L

e

M

o

t

t

o

t

f

s

s

a

a

u

b

t

a

m

S

l

g

t

b

t

4

c

b

e

e

q

t

4

d

o

c

d

U

a

r

p

t

a

f

t

g

J

s

p

i

a

s

u

(

v

c

a

w

i
eginning and end of each method (including before any nested

eturns). When the instrumented program is executed, an output

ith both the execution trace and energy consumption is pre-

ented a file at the end of the execution. An example of the gener-

ted output trace is shown in the Instrumentation documentation.

This tool uses Intel’s Runtime Average Power Limit

RAPL) (Dimitrov et al., 2015), and the Java based RAPL framework

RAPL (Liu et al., 2015). This allows us to record precise energy

onsumption measurements from several hardware components

CPU, DRAM, GPU, PACKAGE), as RAPL is a very reliable tool (as

hown in Hähnel et al., 2012 and Rotem et al., 2012). In addition,

he instrumentation itself is based on the JavaParser 6 set of tools

o parse and instrument the code.

Note that SPELL is not limited to only using RAPL to measure

nergy, but is developed in a way that it may receive any energy

easurement framework or tool to be used allowing the analysis

f other languages. It also permits looking at other domains such

s: Android applications when using (Hoque et al., 2015; Monsoon,

018), embedded devices using the ODroid XU-3 7 ; and other sci-

ntific works (Li et al., 2013; Grech et al., 2015; Stulova et al., 2016;

iqat et al., 2013; Noureddine et al., 2015; Hao et al., 2013; Pathak

t al., 2012; Hoque et al., 2015; Chowdhury and Hindle, 2016).

SPELL matrix construction. The second auxiliary tool, BuildSPELL-

atrixFromOutput , uses the execution/measurement output log of

ur instrumented program as the input to construct a SPELL ma-

rix. This automatically looks at the method calls, and aggregates

he energy consumption, execution time, and frequency of meth-

ds into our matrix representation of program components and

ests.

If the previous tool (Instrumentation) were to be swapped out

or another technology or measurement system, this tool would

till create the correct SPELL matrix as long as its’ input follows the

ame defined language. Nonetheless, this too can be switched for

nother SPELL matrix construction tool. An example of the gener-

ted output trace is shown in the BuildSPELLMatrixFromOutput doc-

mentation.

SPELL analysis. The core tool within the tool-kit, Spectrum-

asedEnergyLeakLocalization , is a Java implementation of the SPELL

echnique formally (and fully) defined in Section 2 . This tool parses

 SPELL matrix (for example the output of the BuildSPELLMatrixFro-

Output tool), and calculates the Oracle, Similarity, and Global

imilarity for all of the program’s components given to be ana-

yzed.

As SPELL is language independent, it does matter what pro-

ramming language was analyzed nor with what measurement

echnique or tool. Any of the two auxiliary tools can be swapped

y other similar tools if the user prefers a different approach, sys-

em, or domain.

. Empirical evaluation

One of our goals is to help provide programmers ways to be-

ome more energy-aware. Additionally, our SPELL technique is to

e used by developers to help them detect energy leaks (or en-

rgy inefficiencies) on a source code level. Thus, we designed an

mpirical study to understand and answer the following research

uestions:

RQ 1 Can the energy leaks identified by SPELL help developers im-

prove the overall energy efficiency of their programs?

Answering this question allows us to understand if in fact

SPELL can detect areas in the source code where there is a

probability of an energy hotspot occurring. If SPELL were to
6 JavaParser: http://javaparser.org/ .
7 ODroid XU-3: https://www.hardkernel.com/ko/tag/odroid-xu3/ .

6

consistently point to areas in the code, where in turn the

developer would go ahead and alter, and the energy effi-

ciency improves, we can assume it is indeed identifying en-

ergy leaks. If it were to indicate areas where by the devel-

oper’s changes actually brought about a deterioration in the

energy consumption, then SPELL is not able to identify en-

ergy leaks.

RQ 2 Are the programs improved by developers assisted by SPELL

significantly more energy efficient than the programs improved

by developers without tool-assistance?

If a developer using SPELL is not significantly producing

more energy efficient programs, then it would mean there

is no need to use such a tool as a developer’s own knowl-

edge is enough for such a task.

RQ 3 Are the programs improved by developers assisted by SPELL

significantly more energy efficient than the programs improved

by developers with an off the shelf profiler?

This question is very important, as one might assume that

SPELL is nothing more than another profiler, or that using

an off the shelf profiler is enough to improve the energy ef-

ficiency of a program. Additionally, answering this question

will allow us to understand if looking at a program’s execu-

tion performance, and optimizing based off that information

is enough to optimize for energy.

The following sections will describe in detail the design, execu-

ion, results and discussion of our empirical study.

.1. Experimental setup

Subjects. Participants in this study were selected from a candi-

ate group that replied to an invitation that we publicized among

ur departments and two software houses. The selection process

onsisted of a self assessment step, in which to be eligible, candi-

ates had to consider themselves experienced Java programmers.

ltimately, 15 programmers were selected: 12 male and 3 female;

ll with computer science background and/or professional expe-

ience: 6 postdoc researchers, 6 PhD students, and 3 professional

rogrammers.

Design. For this study, we asked programmers to try to optimize

he energy consumption of a program in three different scenarios:

 control group, with our SPELL technique, and with a profiler.

The participants were then arranged into groups of threes (one

or each scenario) according to their professional status. Essentially,

he outcome was 5 different groups of 3: 2 groups of postdoc, 2

roups of PhD students, and 1 group of professional programmers.

Objects. In order to support the study, we initially considered 63

ava projects from an object-oriented course for computer science

tudents, where students were asked to build a journalism support

latform, where users (Collaborators, Journalists, Readers, and Ed-

tors) can write chronicles and reports, give likes and comments,

nd perform other tasks.

We filtered these projects to obtain the ones which passed a

et of system tests designed by the course instructors, and all 16

nique operations and functional requirements were implemented

posting chronicles/reports, registering users, writing comments,

iewing top commented, etc.). By doing so, we ended up with 42

omparable and differently implemented projects. 8

Due to allowing certain operations such as Listing Comments ,

nd to provide an initial “warm-up”, for each of the 42 projects

e populated the system with an initial set-up with: 30 0 0 Chron-

cles, 30 0 0 Reports, 7655 Likes, 8586 Comments, 60 Collaborators,

0 Journalists, 406 Readers, and 15 Editors.
8 http://www.di.uminho.pt/ ∼jas/Research/spellStudies.rar .

http://javaparser.org/
https://www.hardkernel.com/ko/tag/odroid-xu3/
http://www.di.uminho.pt/~jas/Research/spellStudies.rar

8 R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463

Table 3

SPELL and Profiler ranking of methods from Projects P 1 , P 47 , P 49 , P 6 , and P 59 . The

first column represents the project number, the second and third the top methods

and ψ reported by SPELL (as hotspots), and the last two represent the top worst

methods and % reported by the profiler.

Proj. Method (SPELL) ψ Method (Profiler) %

P 1 voteInReport 0.97 voteInReport 95.3

getUserLoggedInType 0.02 listArticlesByTheme 2.7

P 47 listAllChronicles 0.57 addComment 51.1

listAllReports 0.15 listAllChronicles 15.8

chronicleExist 0.12 chronicleExist 7.8

P 49 Like 0.27 ListTheme 29.3

ListComments 0.19 ListTopic 27.5

AddComment 0.10 ListComments 6.5

ListTopic 0.08 Like 5.5

P 6 printNoticiaTopicoTema 0.40 listChronicles 32.8

printCronicaTopicoTema 0.20 listReports 24.9

isLogged 0.15 topChronicles 13.2

P 59 getArticle 0.94 getArticle 81.9

vote 0.4 getComments 12.4

Table 4

Software Metrics for Projects P 1 , P 47 , P 49 , P 6 , and P 59 .

Classes Methods LOC Max comp. Avg comp.

P 1 38 181 1037 26 5.05

P 47 32 155 923 25 2.38

P 49 27 131 811 17 3.37

P 6 15 122 691 37 5.04

P 59 32 151 905 11 3.45

Min 15 122 691 11 2.38

Avg 28.8 148 873.4 23.2 3.86

Max 38 181 1037 37 5.05

w

m

b

%

b

m

T

r

a

m

s

s

c

0

a

t

w

c

i

8

3

p

E

e

C

p

4

5

e

5

p

m

l

t

p

e

b

g

n

m

c

g
To execute the projects, we defined 7 test scenarios (i.e., 7 sce-

narios replicating real program usage), simulating 7 days of inter-

action with the platform. Each test scenario was made up of a ran-

dom number (varying between the hundreds and the thousands)

of the 16 unique operations. While each test scenario contained

each of the 16 unique operations, the randomness allowed certain

days to have more of a certain type of operation than others. For

example Tests 5 and 6 contain more write operations, while the

others contain more read and lookup operations.

For selecting which projects would actually be explored in our

study, we have resorted to SPELL itself. Indeed, we have used the

test scenarios described previously to calculate the global similar-

ity value for each of the 42 software projects (each component

was defined as one project, so 42 components were analyzed in

total). Project 1 (P 1) obtained a global similarities of 0.4259, P 47 of

0.4093, P 49 of 0.1439, P 6 of 0.0042, P 59 of 0.0042, P 36 of 0.0029,

P 17 of 0.0015, etc.

The reason for using SPELL here is that a higher global similar-

ity represents a more probable scenario where an energy leak may

be occurring as it is more responsible for the overall consumption,

and means developers should focus their attention on that specific

component as it is the most energy problematic one.

This gives us a ranking of the most problematic projects ac-

cording to SPELL. However, still we do not know where to look

at to try to optimize. Thus, applying SPELL to each program but

considering components as methods would allow us to obtain a

ranking of methods that are the most/least responsible for energy

consumption. So, we ran the SPELL analysis on the 5 worst ranking

projects, so that 1 project is considered by each of our participant

groups, to localize where energy leaks are present on a method

level.

The global similarity for each of the projects’ methods where

ψ > 0.07 or to show at least 2 methods per project is shown in

Table 3 . The first column indicates the project, while the second

column states the problematic Class.method according to SPELL,

and the third column states the global similarity value. The higher

it is, the more responsible it is for the global inefficiency, and

where a problem is most probable to be found.

As a profiling tool, we turned to the NetBeans (8.2) Profiler, 9 a

Java profiler integrated into the NetBeans IDE. By using the profil-

ing methods mode, and more specifically the Hot spots tool, 10 we
9 https://profiler.netbeans.org/ .
10 https://profiler.netbeans.org/docs/help/5.5/snap _ cpu.html .

o

t

w
ere able to see what methods the tool was uncovering as perfor-

ance bottlenecks. Presented in Table 3 are the methods pointed

y the profiler, under the Method (Profiler) column, and under the

 column is the percentage of time (CPU) of the method as stated

y the Hot spots tools. Just as with SPELL, the higher the value, the

ore problematic the method is.

To further characterize the projects that we used, we show in

able 4 concrete metrics about them. Each line represents the met-

ics for a single project, with the last 3 being the minimum, aver-

ge, and maximum values. Columns 2–4 are the number of classes,

ethods, and lines of code (LOC), respectively. Column 5 repre-

ents the max cyclomatic complexity present in that project from a

ingle method. Finally, column 6 represents the average cyclomatic

omplexity for that class, excluding methods with a complexity of

 or 1.

Measurements. In order to analyze the energy consumption of

ll projects, we have instrumented their code using the SPELL

oolkit. The instrumentation code is realized with calls to RAPL,

hich allows us to measure and monitor the energy that is being

onsumed.

Our measurements were made on a desktop with the follow-

ng specifications: Linux 3.13.0-53-generic operating system, with

GB of RAM, and a Sandy Bridge Intel(R) Core(TM) i3-3240 CPU @

.40GHz. In the architecture of our machine, RAPL is only able to

rovide information regarding the energy consumption of the CPU.

ach test was executed 30 times (Hogg and Tanis, 1977), and we

xtracted the cardinality and average values for both the time and

PU energy consumption (of the specific test and not the initial

opulation as to only analyze the tests).

.2. Execution

We asked our 5 groups of participants to analyze one of the

 projects and, to the best of their knowledge, optimize its en-

rgy performance. Each group was randomly assigned one of the

 projects. They were also given the project’s description and in-

ut examples to familiarize themselves with the software require-

ents and structure, and allowed them to navigate the program

ooking at whatever they felt they needed to understand. We asked

hem to dedicate approximately 30 minutes to first understand the

roject. Each participant was given a series of test cases and their

xpected outputs. This allowed them to verify if they changed the

usiness logic when refactoring and optimizing the project.

Finally, we randomly chose one of the participants in each

roup to have access to information produced by our SPELL tech-

ique for the given project, and one to have access to infor-

ation produced by the NetBeans profiler. Both were asked to

losely follow the recommendations of the tools. Thus, for each

roup/project, one participant used SPELL, one used a profiler, and

ne used no tool (control-group). The only imposed restriction was

o try to dedicate no more than 2 h to optimize the project.

We instructed them to take note of the time they began and,

hen they were satisfied with their work and felt they did indeed

https://profiler.netbeans.org/
https://profiler.netbeans.org/docs/help/5.5/snap_cpu.html

R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463 9

Fig. 3. Global percentage of gains for all projects.

m

T

d

t

t

t

e

p

t

4

r

7

v

o

o

e

e

t

t

t

c

t

a

(

4

w

w

a

o

e

i

a

3

d

t

(

S

t

v

c

<

u

t

a

f

o

0

w

b

a

a

i

o

w

g

s

p

t

a

g

F

m

i

a

(

c

u

c

w

W

g

S

d

a

i

p

i
ade an impact to the performance, to take note of the end time.

hey were also asked to describe what changes they made (or, if

ue to time restrictions, what changes they would make), and if

hey (non control-group participants) found it beneficial to have

he data produced by the tools when optimizing for energy, or if

hey (control-group participants) would have found it impactful.

Afterwards, we collected all the refactored programs (3 differ-

nt variations for each), made sure everything produced the ex-

ected output, and measured the energy consumption and execu-

ion time from these refactorings.

.3. Results

Table 5 present the results for Projects P 1 , P 47 , P 49 P 6 , and P 59 ,

espectively. Each row under Test represents the data for one of the

 tests scenarios, with the final row being the totals and global

alues. The first block of 2 columns represents the data for the

riginal project, showing Joules (J) and execution time in millisec-

nds (ms). The second, third, and fourth block (with 4 columns

ach) represent the measured energy, execution time, and en-

rgy gain percentage (relative to the original project) for the con-

rol group, SPELL group, and profiler group, respectively. The time

aken to optimize is shown in parentheses above each block next

o the group name. A graphical representation of the global per-

entage of gains for each project can be seen in Fig. 3 , where

he blue dotted bars represents the energy improvement (Joules)

nd the orange bars represent the execution time improvement

ms).

.4. Discussion

To validate improvements and changes in energy consumption,

e tested the following hypothesis:

H 0 : P (A > B) = 0 . 5

H 1 : P (A > B) � = 0.5

here P (A > B) represents, when we randomly draw from both A

nd B, that the probability of a draw from A is larger than the

ne from B is 50% in the case of our null hypothesis, and differ-

nt than 50% in our alternative hypothesis. To understand if there

s an overall significant relevance between the (A,B) distributions,

nd not only per test scenario or per project, the data from all

0 measured samples, 7 tests, and 5 projects were grouped per

istribution (Original, Control, SPELL, and Profiler). The distribu-

ions were defined in the following (A, B) pairs: (Original, Control),
Original, SPELL), (Original, Profiler), (Control, SPELL), and (Profiler,

PELL). We consider the samples as independent, non-normal dis-

ributed, and ran the Wilcoxon signed-rank test with a two-tail p

alue with α = 0 . 01 . The improvements were indeed very signifi-

ant, producing significant relevance in all 5 cases, with p -values

 0.0 0 01.

To calculate a nonparametric effect size, Field (2009) suggests

sing Rosenthal’s formula (Rosenthal, 1991; Rosenthal et al., 1994)

o compute a correlation, and compare the correlation values

gainst Cohen ’s (1988)) suggested thresholds of 0.1, 0.3, and 0.5

or small, medium, and large magnitudes, respectively. Thus we

btained the values of: 0.4 (medium), 0.6 (large), 0.3 (medium),

.6 (large), and 0.5 (large) for the respective 5 (A,B) pairs. Thus,

e can see that SPELL outperforms the profiler when compared to

oth the original versions, where SPELL achieved a large effect size

nd the profiler a medium effects size, and to each other with also

 large effect size.

Returning to our research questions, we have shown that there

s both significant relevance and a large effect size when using

ur SPELL technique to improve the energy efficiency of programs,

ith an average energy gain of 44% (RQ1). While both the control-

roup (no tool assistance) and the profiler group did also produce

ignificant relevance with their energy optimizations when com-

ared to the original versions, SPELL outperformed both. Whereas

he control group achieved a medium effect size, SPELL achieved

 large effect size and when comparing SPELL to the control

roup, the former once again achieved a large effect size (RQ2).

inally, the same applies to the profiler group where it achieved a

edium effect size when comparing the optimizations to the orig-

nal version (versus the large effect size of SPELL), and again SPELL

chieved a large effect size when comparing to the profiler group

 RQ3).

Additionally, we conducted a study to understand what the

ontrol group developers did to their projects, why did they end

p producing gains, and why were those gains always lower when

ompared to the SPELL group. The goal was to understand if there

ere potential energy issues that SPELL was not able to detect.

e observed that for Project P 1 the developer in the control

roup focused on modifying 3 methods, 2 of which ranked last by

PELL, while the other was ranked first. For Projects P 47 and P 49 ,

evelopers in the control group changed several methods, which

ccording to SPELL were not the most problematic. For example,

n P 47 , the users modified the 3 rd , 4 th , 8 th , 9 th , and 23 rd most

roblematic methods according to SPELL, and in P 49 , they mod-

fied the 5 th , 7 th , 10 th , 17 th , 22 nd , and 25 th most problematic

10 R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463

Table 5

Study results from all projects.

Original Control – (2h05) SPELL – (1h13) Profiler – (1h33)

Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms

P 1 1 93.1 8621 17.8 1289 80.9 85 13.9 913 85.0 89 13.8 888 85.2 90

2 20.3 1645 11.3 1796 44.2 −9 8.8 537 56.4 67 9.3 567 54.0 66

3 87.4 7982 15.7 1146 82.0 86 13.8 869 84.2 89 13.8 869 84.2 89

4 32.0 2666 15.0 1005 53.0 62 13.4 859 58.0 68 14.0 905 56.2 66

5 58.5 5322 14.9 985 74.5 81 11.8 784 79.8 85 11.9 785 79.6 85

6 17.9 1343 15.0 753 16.1 44 11.7 725 34.6 46 12.1 753 32.2 44

7 14.0 928 13.6 850 2.9 8 11.9 725 14.8 22 12.6 780 10.1 16

Total 323.1 28507 103.3 7824 68.0 73 85.5 5413 73.5 81 87.6 5547 72.9 81

Original Control – (2h02) SPELL – (1h16) Profiler – (0h44)

Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms

P 47 1 51.4 4487 19.3 1216 62.3 73 13.3 1160 74.1 74 21.5 1417 58.2 68

2 18.2 1235 10.3 641 43.2 48 7.6 798 58.4 35 10.1 643 44.2 48

3 36.7 2972 14.4 899 60.8 70 11.1 1018 69.8 65 16.1 1022 56.2 66

4 44.3 3683 18.1 1197 59.2 68 11.2 1024 74.7 72 19.1 1268 56.8 66

5 39.3 3323 18.3 1266 53.5 62 14.1 1267 64.1 61 18.8 1270 52.3 62

6 26.9 2024 15.6 991 42.1 51 13.0 1166 51.7 42 16.0 1008 40.4 50

7 30.0 2311 13.3 836 55.5 64 8.9 882 70.3 61 13.9 881 53.5 62

Total 246.7 20034 109.3 7045 55.7 65 79.1 7316 67.9 63 115.5 7510 53.2 63

Original Control – (1h49) SPELL – (0h47) Profiler – (0h36)

Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms

P 49 1 40.2 2508 39.8 2458 1.1 2 23.4 2085 41.9 17 33.5 2056 16.8 18

2 19.9 1392 17.1 1210 14.2 13 9.0 972 54.8 30 15.9 943 20.0 32

3 34.1 2094 33.4 2042 2.1 2 15.8 1539 53.7 27 29.8 1728 12.6 17

4 36.0 2202 36.0 2200 0.1 0 17.0 1701 52.7 23 31.7 1865 12.0 15

5 24.5 1572 22.0 1380 10.1 12 20.2 1280 17.5 19 22.9 1341 6.4 15

6 19.9 1240 19.1 1182 4.0 5 17.1 1092 13.9 12 19.1 1063 3.9 14

7 29.3 1813 26.8 1644 8.5 9 18.8 1289 36.0 29 26.8 1501 8.7 17

Total 203.9 12821 194.1 12115 4.8 6 121.3 9958 40.5 22 179.7 10497 11.9 18

Original Control – (2h13) SPELL – (1h22) Profiler – (2h00)

Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms

P 6 1 18.5 1351 19.0 1460 −2.6 −8 12.9 966 30.2 28 79.7 7781 −330.9 −476

2 9.4 600 10.3 668 −9.8 −11 7.8 487 17.0 19 13.9 1072 −47.9 −79

3 13.0 878 14.2 969 −9.8 −10 9.8 663 24.2 24 33.7 3010 −160.6 −243

4 21.2 1519 21.7 1571 −2.1 −3 17.1 1215 19.5 20 72.4 6953 −240.9 −358

5 13.1 939 14.8 1061 −13.0 −13 10.7 732 18.2 22 18.1 1453 −37.8 −55

6 12.0 804 13.2 902 −10.3 −12 10.3 673 14.3 16 14.0 1010 −16.3 −26

7 18.7 1254 19.1 1306 −2.2 −4 14.3 986 23.6 21 69.4 6759 −270.5 −439

Total 106.0 7345 112.4 7937 −6.1 −8 83.0 5723 21.7 22 301.2 28038 −184.2 −282

Original Control – (1h58) SPELL – (1h04) Profiler – (1h21)

Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms

P 59 1 13.2 989 13.3 992 −0.6 0 11.0 803 16.5 19 11.3 797 14.9 19

2 8.0 453 7.1 436 11.5 4 5.5 391 31.1 14 6.6 395 18.0 13

3 10.2 722 10.4 730 −1.8 −1 8.5 643 16.6 11 9.4 630 8.3 13

4 10.5 763 10.4 758 1.1 1 9.8 679 6.8 11 9.5 648 10.0 15

5 11.5 840 11.5 846 −0.5 −1 9.8 681 14.9 19 10.0 687 12.5 18

6 10.0 633 9.3 611 7.0 3 8.6 548 14.1 13 8.4 539 16.5 15

7 7.8 529 8.0 535 −2.5 −1 7.3 472 7.0 11 7.3 472 7.0 11

Total 71.3 4929 70.1 4908 1.7 0 60.5 4215 15.1 14 62.4 4168 12.5 15

r

j

b

s

b

m
ones. Thus, while these control group users were able to indeed

optimize the program as they tackled methods which had issues

(and were also identified by SPELL), they tackled methods which

were not the most critical as the higher SPELL ranked methods. Fi-

nally, the control group developer for Project P 6 chose to modify

the main method, by replacing the mechanisms used to process

input by a new class he created, and the one for P actually only
59
eplaced global imports (e.g. java.util. ∗) by specific ones (e.g.

ava.util.HashMap) These last two ones explained why they

ecame worse.

Observations. From this study, we can see several interesting ob-

ervations. In the case of Project P 1 and P 59 , the rankings from

oth using SPELL and the profiler pointed to the same principal

ethod (as shown in Table 3). Both were given a very high re-

R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463 11

s

fi

p

a

t

o

t

w

r

c

l

t

c

r

s

s

s

i

p

t

e

t

s

g

t

e

c

m

t

h

c

i

a

m

A

t

t

c

d

s

t

m

p

h

w

l

u

w

m

o

p

i

u

t

2

t

c

t

e

w

g

o

4

d

c

c

o

w

d

i

u

m

s

i

t

e

h

f

b

f

t

I

h

i

a

t

s

c

c

a

m

s

n

s

E

f

p

a

t

c

p

4

i

e

l

s

m

e

m

f

p

s

f

c

ponsibility percentage (by SPELL) and high CPU time (by the pro-

ler). This meant that if this method was optimized, a great im-

act in the performance would occur as this was, without a doubt,

 very problematic method due to a bottleneck. Consequently for

hese two projects, the participants achieved very similar energy

ptimizations as one would expect. The slight difference can be at-

ributed to what methods SPELL and the profiler pointed to after-

ards, with the SPELL recommendations producing slightly better

esults.

We can also see how programmers with access to the SPELL re-

omendations were more efficient spending between 38% and 57%

ess time, compared to the control-group, to detect and correct

he problem, while also producing more efficient programs in both

ases of energy and execution time. While those with the profile

ecomendations did also spend less time, they did not achieve re-

ults as good as those with the SPELL recommendation as we have

een. The participants also felt that having the ranking of respon-

ibility percentage was very useful in identifying the energy leaks

n the code, while the participants without this information ex-

ressed how they did not know where to start looking, or if cer-

ain parts were in fact problematic. All this is actually what we

xpected (for both SPELL and the profiler) as there is a substan-

ial impact on having tools for energy-aware programming, as also

uggested by Pinto et al. (2014a) and Pang et al. (2016) .

Moreover, when comparing the obtained gains from the control

roup with the ones from the SPELL group, we can conclude that

heres is not much left out by SPELL in terms of energy leaks or

nergy inefficient methods. Considering the changes made to the

ode by control group developers, we observed that when they

odified methods with highest ranking assigned by SPELL, than

he obtained gains of close to the ones in the SPELL group. This

appened in Project P 1 , where both the control and SPELL groups

hanged the method ranked #1 by SPELL, and respectively obtain-

ng gains of 68% and 73.5%.

We also observed that the gains obtained by the control group

re somewhat proportional to the SPELL ranking of the modified

ethods, as demonstrated by the results for projects P 47 and P 49 .

dditionally, as demonstrated by the results of P 6 and P 59 , when

he changes do not reflect the SPELL output, than energy consump-

ion either stays roughly the same (as in Project P 59), or even in-

reases (as in Project P 6).

Another interesting case is in Project P 6 , where the results in-

icate a clear efficiency loss (both time and energy) for the case

tudy using the profiler information. By comparing the original and

ransformed versions of the code, we discovered that the program-

er responsible for this study decided to optimize the code by im-

roving the efficiency of all listings and lookups on data structures,

ence worsening insertions. The fact is that the feature tests that

e provided contained more insertions than listings or lookups,

eading to a decrease in the refactored version’s performance. To

nderstand if this outlier skewed our previous statistical analysis,

e re-ran the analysis without considering Project P 6 . The results

aintained the same, with the only difference being the profiler

btained a slightly larger effect size when compared to the original

rojects. Thus, this does not change the conclusions of the study.

As the study only focused on giving participants one “round” or

teration of both the SPELL and profiler analysis, the participants

sing SPELL and the profiler tended to be “satisfied” with their op-

imizations much quicker, with time to spare in their maximum

 hours scenario. In a real-world scenario, they would then run

hrough another analysis, looking for new (if any) energy leaks and

ontinue to further optimize if possible.

Finally, none of the participants had any knowledge of what

echniques or optimizations could be done to specifically reduce

nergy consumption before going into the study. Nevertheless,

ith the knowledge on basic performance issues, algorithms, pro-
ram complexity, and generally aiming for standard execution time

ptimization, they were able to achieve good results.

.5. Looking back with DRAM

In this paper, we have so far provided evidence that SPELL helps

evelopers to identify the components of a software program that

an be improved to gain energy efficiency.

So far, however, and although we have argued that SPELL

an receive inputs from different hardware components, we have

nly shown its effectiveness when using CPU measurements. This

as due to the fact that, when we have initiated this research

irection, only energy measurements from the CPU were available

n the machines we targeted. Since then, we were able to use an

pgraded server, which allows us to access both CPU and DRAM

easurements.

In the remainder of this section, we re-executed the initial

tages of our study to calculate the global similarity consider-

ng these two hardware components. Our purpose for doing so is

wofold. For once, we seek to understand what impact the DRAM

nergy consumption would have had on our study. On the other

and, we also aim to validate the consistency of SPELL across dif-

erent systems.

The steps, and methodology we followed here are identical as

efore. The measurements were made on a new system with the

ollowing specifications: Linux Ubuntu Server 16.10 operating sys-

em, kernel version 4.8.0-22-generic, with 16GB of RAM, a Haswell

ntel(R) Core(TM) i5-4460 CPU @ 3.20GHz.

The global similarity results are shown in Table 6 . The left-

and side are the results from the original analysis (also shown

n Table 3), and the right-hand side are the results from the SPELL

nalysis including DRAM energy consumption. In almost all cases,

he rankings between both analyses maintained the same, with

light differences in the global similarity (ψ) value. The single ex-

eption can be observed in Project P 47 . Here, the Like method

ame in fourth with a ψ value of 0.078, while it came in third with

 ψ value of 0.1130 just slightly surpassing the chronicleExist
ethod when DRAM energy consumption was also analyzed.

The initial hypothesis was that the results from the first analy-

is would not suffer any major changes in this case, as DRAM does

ot tend to have a high impact in overall energy consumption, as

hown in other research (Pereira et al., 2017b; Melfe et al., 2018).

ven so, this post-analysis shows how having more available in-

ormation on the energy consumption of different hardware com-

onents (for example, DRAM) can bring about a deeper analysis,

nd such as in the case of Project P 47 , can reveal more informa-

ion on the problematic spots within one’s application. The more

omponents considered, the more accurate of an analysis can be

erformed by SPELL.

.6. Threats to validity

We present now some threats to validity of our study, divided

n four categories as defined in Cook and Campbell (1979) .

Conclusion validity. From our experiment it is clear that we can

ffectively find energy hot spots in source code, both on a project

evel, and on a method level. Moreover, through the empirical

tudy we have shown that these results are useful for program-

ers. Nevertheless, by energy consumption we only considered

nergy consumption that can be related to CPU usage due to our

achine limitations. While we have shown that energy and per-

ormance are sometimes related in non-predictable ways, the im-

acts of other hardware components on energy consumption de-

erve further elaboration. Thus, we intend to explore this in the

uture by running a similar study on a machine with a more re-

ent architecture.

12 R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463

Table 6

SPELL with and without DRAM ranking of methods from Projects P 1 , P 47 , P 49 , P 6 , and P 59 .

Proj. Method (SPELL) ψ ψ Method (SPELL w/ DRAM)

P 1 voteInReport 0.97 0.99 voteInReport

getUserLoggedInType 0.02 0 . 00 getUserLoggedInType

P 47 listAllChronicles 0.57 0.52 listAllChronicles

listAllReports 0.15 0.16 listAllReports

chronicleExist 0.12 0.1130 Like

Like 0.078 0.1125 chronicleExist

P 49 Like 0.27 0.35 Like

ListComments 0.19 0.13 ListComments

AddComment 0.10 0.09 AddComment

ListTopic 0.08 0.07 ListTopic

P 6 printNoticiaTopicoTema 0.40 0.40 printNoticiaTopicoTema

printCronicaTopicoTema 0.20 0.22 printCronicaTopicoTema

isLogged 0.15 0.17 isLogged

P 59 getArticle 0.94 0.93 getArticle

Vote 0.04 0.05 Vote

e

m

e

e

i

t

e

p

2

g

t

w

p

c

2

2

e

C

c

t

a

e

s

d

a

O

a

2

w

e

e

2

d

t

a

p

o

a

f

c

s

a

c

o

t
Internal validity. In this case we are concerned with other fac-

tors that may interfere with our experiment results. The energy

consumption measurements we have for the different projects

could have other factors than not just the source code itself. To

avoid this we ran all the tests in the same way. For every test we

added a “warm-up”, and we ran every test 30 times, taking the av-

erage values for these runs so we could minimize particular states

of the machine used and its other software. Also, the results from

participants may have been influenced by other factors other than

the SPELL and profiler recommendations we gave them. However,

the results achieved through the five projects are quite consistent.

Construct validity. The purpose of our study was to evaluate

our SPELL technique alongside programmers, to both properly un-

derstand the benefits of our technique with programmers, and to

validate the efficiency of our technique in detecting energy leaks.

Thus, we constructed an empirical study based off the suggestions

of Ko et al. (2015) . For example, for the task duration, they suggest

that the tasks should not be so easy as to have almost every par-

ticipant complete them before the time expires (leading to ceiling

effects Rosenthal and Rosnow, 1984), nor making it so difficult that

no one can complete them in the allotted time no matter which

tool is used (leading to floor effects Rosenthal and Rosnow, 1984).

Both of these cases would make it difficult to statistically discrim-

inate and show the differences between tools.

Due to this, and in addition to another suggestion that such

studies should not be more than 2 h long (Ko et al., 2015), we

decided to use the academic Java projects we presented. This al-

lowed us to have projects which were neither too difficult nor too

easy to both understand and optimize within our established time

limit. Using larger real-world applications would introduce a risk

of participants not completing or understanding (possible floor ef-

fects) due to the complexity and possible lack of domain documen-

tation. Nevertheless, there is no basis to suspect that these projects

are better or worse than any other kind we could have used.

External validity . In this case we are concerned about the gen-

eralization of the results. The used source code has no particu-

lar characteristics that could influence our findings. Its only par-

ticularity is that it is written in Java, and maybe different results

could be found for other PLs. However, our technique is indepen-

dent of the language and thus we do not anticipate that. Thus,

we believe that these results can be further generalized for other

programs.

5. Related work

While green computing exists for at least a decade, only re-

cently has it started to trend with the growing concern of the

impact on our environment. In average, close to 50% of the en-
rgy costs of an organization can be attributed to the IT depart-

ents (Harmon and Auseklis, 2009). Researching and designing

nergy-aware programming languages is an active area (Cohen

t al., 2012). In fact, programmers many times seek help in resolv-

ng energy inefficiencies, showing that there are many misconcep-

ions within the programming community as to what causes high-

nergy consumption, how to solve them, and a heavy lack of sup-

ort and knowledge for energy-aware development (Pinto et al.,

014a; Pang et al., 2016; Zhang et al., 2014; Wilke et al., 2013),

reatly motivating this work. This awareness of energy consump-

ion is notorious within the software testing area, where some

orks aim at reducing the overall consumption in the testing

hase, by reducing the number of tests while maintaining the code

overage (Jabbarvand et al., 2016; Li et al., 2014).

Studies have shown how different design patterns (Sahin et al.,

012; Bunse and Stiemer, 2013), sorting algorithms (Bunse et al.,

0 09b; 20 09a), android API and advertisements (Linares-Vásquez

t al., 2014; Jabbarvand et al., 2015; Rasmussen et al., 2014;

ruz and Abreu, 2017), software version changes (Hindle, 2015a),

ode obfuscations (Sahin et al., 2016), refactorings and transforma-

ions (Sahin et al., 2014; Brandolese et al., 2002; Park et al., 2014),

nd different Java based collections (Pereira et al., 2016; Manotas

t al., 2014; Pinto et al., 2016; Hasan et al., 2016) have a statistically

ignificant impact on energy usage. Studies have also shown how

ifferent programming languages have very different energy us-

ges (Couto et al., 2017; Pereira et al., 2017b; Oliveira et al., 2017).

ther researchers have used a model-based power consumption

nalysis in Android mobile applications (Nakajima, 2013; Ma et al.,

013; Nakajima, 2014; 2015).

While we measured our programs using Intel’s RAPL frame-

ork, there are other possible ways of measuring or estimating

nergy consumption (Li et al., 2013; Grech et al., 2015; Stulova

t al., 2016; Liqat et al., 2013; Noureddine et al., 2015; Hao et al.,

013; Pathak et al., 2012; Hoque et al., 2015; Chowdhury and Hin-

le, 2016). As SPELL is not dependent on a specific measurement

echnique, these measurement techniques can easily replace RAPL

nd, alongside SPELL, reason about the energy measurements to

resent a target area of where one should focus their attention to

ptimize.

It is common for software developers to use debugging tools

nd profilers to help detect bugs or performance inefficient code

ragments. Applying these concepts to help detect energy ineffi-

ient code fragments is a much more challenging task. There is

till very little knowledge as to what can be directly done, from

 software developers position, to manipulate and improve energy

onsumption. Even if a developer takes the steps and effort to use

ne of the many energy/power measuring devices, a lot has to be

aken into account such as the contextual information about what

R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463 13

t

T

p

t

o

c

u

l

e

a

c

l

t

i

o

f

t

i

A

p

p

i

D

o

B

m

T

f

r

S

l

t

t

e

g

s

t

e

e

Y

i

o

c

n

e

t

d

b

h

T

i

c

i

T

fi

6

l

t

t

t

a

t

m

l

o

t

a

a

g

s

t

p

o

o

t

u

t

e

i

2

i

s

a

i

m

p

D

c

i

A

v

p

w

t

C

U

w

-

n

t

t

g

a

C

R

A

A

A

he program is supposed to be doing, or where it was executed.

hus, this challenging problem has attracted several researchers to

ropose solutions, but with a focus on mobile applications.

Ma et al. (2013) presented a tool, eDoctor , for mobile users to

roubleshoot any irregular battery draining issues they were having

n their smartphones. The authors’ tool analyzes a mobile appli-

ation’s behavior, and identify abnormalities. It then suggests the

ser the most appropriate repair solutions, such as disabling device

ocations, downgrade to previous versions, turn on airplane mode,

tc. A different approach was done by Oliner et al. (2013) , where

 black-box diagnostic is performed. The client application sends

oarse-grained measurements to a server where the data is corre-

ated with client properties (for example running applications). It

hen suggests actions the user may make on the mobile phone to

mprove battery life.

Linares-Vásquez et al. (2014) conducted a large empirical study

n API calls and usage patterns, within the Android development

ramework, to find which have a tendency to have high consump-

ion costs. Their study was conducted on 55 different apps, looking

nto 807 different API methods and defined 131 as energy-greedy

PIs . Similarly, Liu et al. (2014) analyzed 402 different Android ap-

lications and found that there were two main causes of energy

roblems: missing deactivation of sensors or wake locks, and cost

neffective use of sensory data. In response, they developed Green-

roid , a tool to identify these two problems to further help devel-

pers find these issues.

Two similar and complementary works (Cruz and Abreu, 2017;

anerjee and Roychoudhury, 2016), also within the Android do-

ain, defined energy efficient guidelines for mobile development.

he former was based on performance guidelines for mobile and

ocused on code smells affecting CPU usage. The latter focus on

esource usage, leakage, and sensors.

These prior works, while having the same objectives as our

PELL techinique, are based on previously known energy guide-

ines. They focus on finding the patterns, bugs, API, etc., and point

o these areas. We believe that the works which relates the most

o our own are the following two.

Couto et al. (2014) presented a technique where they relate the

nergy consumption to the source code of the application while

iving classifications of methods as Red, Yellow, or Green. They do

o by running each test case twice on the program, where first

hey log the stack trace of each test, and then they log the en-

rgy values for a test. By correlating the stack trace with the en-

rgy values, and using thresholds, they classify the tests as Red,

ellow, or Green. Finally, depending on what methods were called

n those tests, also classify each test as Red, Yellow, or Green. With

ur technique, as we use measured values for each component, we

an provide a more detailed and fine-grained analysis. Our tech-

ique is also not limited in its scope, by this we mean we can

asily analyze code-line, method, class, package level etc., as our

echnique analyzes the components which has no restriction on its

efinition, and is also language independent.

Recently, Verdecchia et al. (2018) presented a naive spectrum-

ased fault localization technique aimed to efficiently locate energy

otspots in source code. Their work is very closely related to ours.

he authors state that the difference between their work and ours

s while our contribution lies more in providing the means to pre-

isely locate energy hotspots in source code, their work aims to

nvestigate if more naive approaches can be used to locate them.

hus, understanding both sides, research can be further done on

nding the best balance of performance and precision.

. Conclusion

This paper introduced SPELL – a spectrum-based energy leak

ocalization technique to identify inefficient energy consumption in
he source code of software systems. This technique uses a statis-

ical method to associate different percentage of responsibility for

he energy consumed to the different source code components of

 software system, thus pinpointing the developer’s attention on

he most critical red spots in his code. Such software components

ay not only be source code fragments, but also a set of equiva-

ent software systems from which we need to select the greenest

ne.

As future work, we plan on adapting, evolving, and testing our

echnique on a mobile phones, as currently it is only for desktop

nd server based systems.

The paper also presented the implementation of this technique

s a language independent tool to locate energy leaks in a pro-

ram’s source code. A front-end for the Java language was con-

tructed to monitor energy consumption at runtime, which uses

he developed SPELL tool to locate leaks in Java.

To evaluate both our technique and tool, we executed an em-

irical study where we asked five groups of three developers to

ptimize the energy efficiency of a software system. One devel-

per had no tool assistance, while the other two used our SPELL

echnique and a profiler, respectively. We showed that developers

sing our technique were able to improve the energy efficiency of

heir programs by 43% on average, while also showing statistical

vidence that the difference between a profiler and our technique

s significant, in favor of the former: the performance is between

% and 72% better.

Thus, we have also shown that optimizing for energy efficiency

s not directly the same as optimizing for performance. We also

howed that using our technique, the performed optimizations

chieved on average a lower Powerup (implying average power sav-

ngs, with better performance and energy efficiency), while opti-

izations following a profiler’s recommendations achieved better

erformance at the cost of energy efficiency.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgments

This work is funded by the ERDF – European Regional De-

elopment Fund through the Operational Programme for Com-

etitiveness and Internationalization - COMPETE 2020 Programme

ithin project POCI-01-0145-FEDER-006961, and by National Funds

hrough the Portuguese funding agency, FCT - Fundação para a

iência e a Tecnologia within project POCI010145FEDER016718,

ID/EEA/50014/2013, and by FCT grant SFRH/BD/132485/2017. This

ork is also supported by operation Centro010145FEDER0 0 0 019

 C4 - Centro de Competências em Cloud Computing, cofi-

anced by the European Regional Development Fund (ERDF)

hrough the Programa Operacional Regional do Centro (Cen-

ro 2020), in the scope of the Sistema de Apoio á Investi-

ação Científica e Tecnológica – Programas Integrados de IC&DT,

nd the first author was financed by post-doc grant referência

4_SMDS_L1-1_D.

eferences

bdulsalam, S. , Zong, Z. , Gu, Q. , Qiu, M. , 2015. Using the greenup, powerup, and
speedup metrics to evaluate software energy efficiency. In: Proceedings of the

Sixth International Green and Sustainable Computing Conference. IEEE, pp. 1–8 .
breu, R. , Zoeteweij, P. , Gemund, A.J.C.v. , 2009. Spectrum-based multiple fault lo-

calization. In: Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE Computer Society, pp. 88–99 .

breu, R. , Zoeteweij, P. , Van Gemund, A.J. , 2007. On the accuracy of spectrum-based

fault localization. In: Proceedings of the Testing: Academic and Industrial

http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0003

14 R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463

K

L

L

L

L

L

L

L

L

M

M

M

M

N

N

O

O

P

P

P

Conference Practice and Research Techniques-MUTATION (TAICPART-MUTATION
2007). IEEE, pp. 89–98 .

Banerjee, A. , Roychoudhury, A. , 2016. Automated re-factoring of android apps to
enhance energy-efficiency. In: Proceedings of the 2016 IEEE/ACM International

Conference on Mobile Software Engineering and Systems (MOBILESoft). IEEE,
pp. 139–150 .

Brandolese, C. , Fornaciari, W. , Salice, F. , Sciuto, D. , 2002. The impact of source code
transformations on software power and energy consumption. J. Circ. Syst. Com-

put. 11 (05), 477–502 .

Bunse, C. , Höpfner, H. , Mansour, E. , Roychoudhury, S. , 2009a. Exploring the energy
consumption of data sorting algorithms in embedded and mobile environments.

In: Proceedings of the Tenth International Conference on Mobile Data Manage-
ment: Systems, Services and Middleware, 2009. MDM’09. IEEE, pp. 600–607 .

Bunse, C. , Höpfner, H. , Roychoudhury, S. , Mansour, E. , 2009b. Choosing the ”best”
sorting algorithm for optimal energy consumption. In: Proceedings of the Forth

International Conference on Software and Data Technologies, pp. 199–206 .

Bunse, C. , Stiemer, S. , 2013. On the energy consumption of design patterns. Soft-
waretechnik-Trends 33 (2), 1–2 .

Chowdhury, S.A. , Hindle, A. , 2016. Greenoracle: estimating software energy con-
sumption with energy measurement corpora. In: Proceedings of the Thir-

teenth International Conference on Mining Software Repositories, MSR, 2016,
pp. 49–60 .

Cohen, J. , 1988. Statistical Power Analysis for the Behavioral Sciences.. Hillsdale, NJ:

Lawrence Earlbaum Associates 2 .
Cohen, M. , Zhu, H.S. , Senem, E.E. , Liu, Y.D. , 2012. Energy types. In: Proceedings of

the ACM SIGPLAN Notices, 47. ACM, pp. 831–850 .
Cook, T.D. , Campbell, D.T. , 1979. Quasi-experimentation: Design & Analysis Issues

for Field Settings. Houghton Mifflin .
Couto, M. , Carção, T. , Cunha, J. , Fernandes, J.P. , Saraiva, J. , 2014. Detecting anomalous

energy consumption in android applications. In: Proceedings of the Eighteenth

Brazilian Symposium on Programming Languages. Springer International Pub-
lishing, pp. 77–91 .

Couto, M., Pereira, R., Ribeiro, F., Rua, R., Saraiva, J., 2017. Towards a green rank-
ing for programming languages. In: Proceedings of the Twenty-first Brazilian

Symposium on Programming Languages. ACM, New York, NY, USA, pp. 7:1–7:8.
doi: 10.1145/3125374.3125382 . Best Paper

Cruz, L., Abreu, R., 2017. Performance-based guidelines for energy efficient mobile

applications. In: Proceedings of the Forth International Conference on Mobile
Software Engineering and Systems. IEEE Press, Piscataway, NJ, USA, pp. 46–57.

doi: 10.1109/MOBILESoft.2017.19 .
Dimitrov, M., Strickland, C., Kim, S.-W., Kumar, K., Doshi, K., 2015. Intel® power gov-

ernor. https://software.intel.com/en-us/articles/intel-power-governor . Accessed:
2017-10-12.

Dombek, P.E. , Johnson, L.K. , Zimmerley, S.T. , Sadowsky, M.J. , 20 0 0. Use of repetitive

dna sequences and the pcr to differentiate escherichia coli isolates from human
and animal sources. Appl. Environ. Microbiol. 66 (6), 2572–2577 .

Ferreira, M.A. , Hoekstra, E. , Merkus, B. , Visser, B. , Visser, J. , 2013. Seflab: a lab
for measuring software energy footprints. In: Proceedings of the 2013 Sec-

ond International Workshop on Green and Sustainable Software (GREENS). IEEE,
pp. 30–37 .

Field, A. , 2009. Discovering Statistics Using SPSS. Sage publications .
Grech, N. , Georgiou, K. , Pallister, J. , Kerrison, S. , Morse, J. , Eder, K. , 2015. Static anal-

ysis of energy consumption for LLVM ir programs. In: Proceedings of the Eigh-

teenth International Workshop on Software and Compilers for Embedded Sys-
tems. ACM, pp. 12–21 .

Hähnel, M. , Döbel, B. , Völp, M. , Härtig, H. , 2012. Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40 (3), 13–17 .

Hao, S. , Li, D. , Halfond, W.G.J. , Govindan, R. , 2013. Estimating mobile application en-
ergy consumption using program analysis. In: Proceedings of the 2013 Interna-

tional Conference on Software Engineering. IEEE Press, pp. 92–101 .

Harmon, R.R. , Auseklis, N. , 2009. Sustainable it services: assessing the impact of
green computing practices. In: Proceedings of the Portland International Con-

ference on Management of Engineering & Technology, 20 09. PICMET 20 09. IEEE,
pp. 1707–1717 .

Hasan, S. , King, Z. , Hafiz, M. , Sayagh, M. , Adams, B. , Hindle, A. , 2016. Energy pro-
files of java collections classes. In: Proceedings of the Thirty-eighth International

Conference on Software Engineering. ACM, pp. 225–236 .

Hindle, A. , 2015a. Green mining: a methodology of relating software change
and configuration to power consumption. Empir. Softw. Eng. 20 (2),

374–409 .
Hindle, A. , 2015b. Green software engineering: the curse of methodology. PeerJ

PrePrints 3, e1832 .
Hogg, R.V. , Tanis, E.A. , 1977. Probability and Statistical Inference, 993. Macmillan

New York .

Hoque, M.A., Siekkinen, M., Khan, K.N., Xiao, Y., Tarkoma, S., 2015. Modeling, pro-
filing, and debugging the energy consumption of mobile devices. ACM Comput.

Surv. 48 (3), 39:1–39:40. doi: 10.1145/2840723 .
Jabbarvand, R. , Sadeghi, A. , Bagheri, H. , Malek, S. , 2016. Energy-aware test-suite min-

imization for android apps. In: Proceedings of the Twenty-fifth International
Symposium on Software Testing and Analysis, pp. 425–436 .

Jabbarvand, R. , Sadeghi, A. , Garcia, J. , Malek, S. , Ammann, P. , 2015. Ecodroid: an ap-

proach for energy-based ranking of android apps. In: Proceedings of Forth In-
ternational Workshop on Green and Sustainable Software. IEEE Press, pp. 8–14 .

Kambadur, M. , Kim, M.A. , 2014. An experimental survey of energy management
across the stack. In: Proceedings of the ACM SIGPLAN Notices, 49. ACM,

pp. 329–344 .
o, A.J. , Latoza, T.D. , Burnett, M.M. , 2015. A practical guide to controlled experiments
of software engineering tools with human participants. Empir. Softw. Eng. 20

(1), 110–141 .
ago, P. , 2015. Challenges and opportunities for sustainable software. In: Proceed-

ings of the Fifth International Workshop on Product Line Approaches in Soft-
ware Engineering. IEEE Press, pp. 1–2 .

i, D. , Hao, S. , Halfond, W.G. , Govindan, R. , 2013. Calculating source line level energy
information for android applications. In: Proceedings of the 2013 International

Symposium on Software Testing and Analysis. ACM, pp. 78–89 .

Li, D. , Jin, Y. , Sahin, C. , Clause, J. , Halfond, W.G. , 2014. Integrated energy-directed
test suite optimization. In: Proceedings of the 2014 International Symposium

on Software Testing and Analysis. ACM, pp. 339–350 .
i, S. , Mishra, S. , 2016. Optimizing power consumption in multicore smartphones. J.

Parall. Distrib. Comput. 95, 124–137 .
ima, L.G. , Melfe, G. , Soares-Neto, F. , Lieuthier, P. , Fernandes, J.P. , Castor, F. , 2016.

Haskell in green land: analyzing the energy behavior of a purely func-

tional language. In: Proceedings of the Twenty-third IEEE International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER’2016). IEEE,

pp. 517–528 .
inares-Vásquez, M. , Bavota, G. , Bernal-Cárdenas, C. , Oliveto, R. , Di Penta, M. , Poshy-

vanyk, D. , 2014. Mining energy-greedy api usage patterns in android apps: an
empirical study. In: Proceedings of the Eleventh Working Conference on Mining

Software Repositories. ACM, pp. 2–11 .

iqat, U. , Kerrison, S. , Serrano, A. , Georgiou, K. , Lopez-Garcia, P. , Grech, N. ,
Hermenegildo, M.V. , Eder, K. , 2013. Energy consumption analysis of programs

based on xmos isa-level models. In: Logic-Based Program Synthesis and Trans-
formation. Springer, pp. 72–90 .

Liu, K. , Pinto, G. , Liu, Y.D. , 2015. Data-oriented characterization of application-level
energy optimization. In: Fundamental Approaches to Software Engineering.

Springer, pp. 316–331 .

iu, Y. , Xu, C. , Cheung, S.-C. , Lü, J. , 2014. Greendroid: aautomated diagnosis of en-
ergy inefficiency for smartphone applications. IEEE Trans. Softw. Eng. 40 (9),

911–940 .
orenzo, O.G. , Pena, T.F. , Cabaleiro, J.C. , Pichel, J.C. , Rivera, F.F. , Nikolopoulos, D.S. ,

2015. Power and energy implications of the number of threads used on the intel
xeon phi. Ann. Multicore GPU Program. 3 (1), 55–65 .

Ma, X. , Huang, P. , Jin, X. , Wang, P. , Park, S. , Shen, D. , Zhou, Y. , Saul, L.K. ,

Voelker, G.M. , 2013. edoctor: Automatically diagnosing abnormal battery drain
issues on smartphones.. In: Proceedings of the NSDI, 13, pp. 57–70 .

anotas, I. , Bird, C. , Zhang, R. , Shepherd, D. , Jaspan, C. , Sadowski, C. , Pollock, L. ,
Clause, J. , 2016. An empirical study of practitioners’ perspectives on green soft-

ware engineering. In: Proceedings of the 2016 IEEE/ACM Thirty-eighth Interna-
tional Conference on Software Engineering (ICSE). IEEE, pp. 237–248 .

anotas, I. , Pollock, L. , Clause, J. , 2014. Seeds: A software engineer’s energy-opti-

mization decision support framework. In: Proceedings of the Thirty-sixth Inter-
national Conference on Software Engineering. ACM, pp. 503–514 .

elfe, G. , Fonseca, A. , Fernandes, J.P. , 2018. Helping developers write energy effi-
cient haskell through a data-structure evaluation. In: Proceedings of the 2018

IEEE/ACM Sixth International Workshop on Green And Sustainable Software
(GREENS). IEEE, pp. 9–15 .

onsoon, 2018. Monsoon solutions, inc. http://www.msoon.com/LabEquipment/
PowerMonitor/ .

akajima, S. , 2013. Model-based power consumption analysis of smartphone appli-

cations.. In: Proceedings of the ACESMB@ MoDELS .
akajima, S. , 2014. Everlasting challenges with the obj language family. In: Specifi-

cation, Algebra, and Software. Springer, pp. 478–493 .
Nakajima, S. , 2015. Model checking of energy consumption behavior. In: Complex

Systems Design & Management Asia. Springer, pp. 3–14 .
Noureddine, A. , Rouvoy, R. , Seinturier, L. , 2015. Monitoring energy hotspots in soft-

ware. Autom. Softw. Eng. 22 (3), 291–332 .

liner, A.J. , Iyer, A.P. , Stoica, I. , Lagerspetz, E. , Tarkoma, S. , 2013. Carat: Collab-
orative energy diagnosis for mobile devices. In: Proceedings of the Eleventh

ACM Conference on Embedded Networked Sensor Systems, SenSys ’13. ACM,
pp. 10:1–10:14 . Roma, Italy, November 11–15, 2013

liveira, W. , Oliveira, R. , Castor, F. , 2017. A study on the energy consumption
of android app development approaches. In: Proceedings of the Fourteenth

International Conference on Mining Software Repositories. IEEE Press, pp.

42–52 .
ang, C. , Hindle, A. , Adams, B. , Hassan, A.E. , 2016. What do programmers know

about software energy consumption? IEEE Softw. 33 (3), 83–89 .
ark, J.J. , Hong, J.-E. , Lee, S.-H. , 2014. Investigation for software power consumption

of code refactoring techniques.. In: Proceedings of the SEKE, pp. 717–722 .
Passos, L.S. , Abreu, R. , Rossetti, R.J. , 2015. Spectrum-based fault localisation for mul-

ti-agent systems. In: Proceedings of the Twenty-Fourth International Joint Con-

ference on Artificial Intelligence (IJCAI5), pp. 1134–1140 .
Pathak, A. , Hu, Y.C. , Zhang, M. , 2012. Where is the energy spent inside my app?:

Fine grained energy accounting on smartphones with eprof. In: Proceedings of
the Seventh ACM European Conference on Computer Systems. ACM, pp. 29–42 .

Pereira, R. , 2017. Locating energy hotspots in source code. In: Proceedings of the
Thirty-ninth International Conference on Software Engineering Companion. IEEE

Press, pp. 88–90 .

Pereira, R. , 2018. Energyware Engineering: Techniques and Tools for Green Software
Development. Universidade do Minho Ph.D. thesis .

ereira, R., Carção, T., Couto, M., Cunha, J., Fernandes, J.P., Saraiva, J., 2017a. Help-
ing programmers improve the energy efficiency of source code. In: Proceed-

ings of the Thirty-ninth International Conference on Software Engineering

http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0013
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1109/MOBILESoft.2017.19
https://software.intel.com/en-us/articles/intel-power-governor
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0026
https://doi.org/10.1145/2840723
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0045
http://www.msoon.com/LabEquipment/PowerMonitor/
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0057

R. Pereira, T. Carção and M. Couto et al. / The Journal of Systems and Software 161 (2020) 110463 15

P

P

P

P

P

P

R

R

R

R

R

R

R

S

S

S

S

T

V

W

Y

Z

i

m

a

s

p

p

c

s

U

i

H

v

e

1

s

P

Companion. IEEE Press, Piscataway, NJ, USA, pp. 238–240. doi: 10.1109/ICSE-C.
2017.80 .

ereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., Saraiva, J., 2017b.
Energy efficiency across programming languages: How do energy, time, and

memory relate? In: Proceedings of the Tenth ACM SIGPLAN International Con-
ference on Software Language Engineering. ACM, New York, NY, USA, pp. 256–

267. doi: 10.1145/3136014.3136031 .
ereira, R. , Couto, M. , Saraiva, J. , Cunha, J. , Fernandes, J.P. , 2016. The influence of

the java collection framework on overall energy consumption. In: Proceedings

of the Fifth International Workshop on Green and Sustainable Software. ACM,
pp. 15–21 .

into, G. , Castor, F. , 2017. Energy efficiency: a new concern for application software
developers. Commun. ACM 60 (12), 68–75 .

into, G. , Castor, F. , Liu, Y.D. , 2014a. Mining questions about software energy con-
sumption. In: Proceedings of the Eleventh Working Conference on Mining Soft-

ware Repositories. ACM, pp. 22–31 .

into, G. , Castor, F. , Liu, Y.D. , 2014b. Understanding energy behaviors of thread
management constructs. In: Proceedings of the 2014 ACM International Confer-

ence on Object Oriented Programming Systems Languages & Applications. ACM,
pp. 345–360 .

into, G., Liu, K., Castor, F., Liu, Y.D., 2016. A comprehensive study on the energy
efficiency of Java’s thread-safe collections. In: Proceedings of the 2016 IEEE In-

ternational Conference on Software Maintenance and Evolution, ICSME 2016,

pp. 20–31. doi: 10.1109/ICSME.2016.34 . Raleigh, NC, USA, October 2–7, 2016
asmussen, K. , Wilson, A. , Hindle, A. , 2014. Green mining: energy consumption

of advertisement blocking methods. In: Proceedings of the Third International
Workshop on Green and Sustainable Software. ACM, pp. 38–45 .

eal, R. , Vargas, J.M. , 1996. The probabilistic basis of Jaccard’s index of similarity.
Syst. Biol. 45, 380–385 .

osenthal, R. , 1991. Meta-analytic Procedures for Social Research, 6. Sage .

osenthal, R. , Cooper, H. , Hedges, L. , 1994. Parametric measures of effect size. The
Handbook of Research Synthesis 231–244 .

osenthal, R. , Rosnow, R. , 1984. Essentials of Behavioral Research: Methods and Data
Analysis. McGraw-Hill Series in Psychology. McGraw-Hill .

otem, E. , Naveh, A. , Ananthakrishnan, A. , Weissmann, E. , Rajwan, D. , 2012. Pow-
er-management architecture of the intel microarchitecture code-named sandy

bridge. IEEE Micro 32 (2), 20–27 .

ousseau, R. , 1998. Jaccard similarity leads to the marczewski-steinhaus topology
for information retrieval. Inf. Process. Manag. 34 (1), 87–94 .

ahin, C. , Cayci, F. , Gutierrez, I.L.M. , Clause, J. , Kiamilev, F. , Pollock, L. , Winbladh, K. ,
2012. Initial explorations on design pattern energy usage. In: Proceedings of

the First International Workshop on Green and Sustainable Software (GREENS),
2012. IEEE, pp. 55–61 .

ahin, C., Pollock, L., Clause, J., 2014. How do code refactorings affect energy usage?

In: Proceedings of the Eighth ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. ACM, New York, NY, USA, pp. 36:1–

36:10. doi: 10.1145/2652524.2652538 .
ahin, C., Wan, M., Tornquist, P., Mckenna, R., Pearson, Z., Halfond, W.G.J., Clause, J.,

2016. How does code obfuscation impact energy usage? J. Softw. Evol. Process
28 (7), 565–588. doi: 10.1002/smr.1762 .

tulova, N. , Morales, J.F. , Hermenegildo, M.V. , 2016. Reducing the overhead of
assertion run-time checks via static analysis.. In: Proceedings of the PPDP,

pp. 90–103 .

refethen, A.E. , Thiyagalingam, J. , 2013. Energy-aware software: Challenges, oppor-
tunities and strategies. J. Comput. Sci. 4 (6), 4 4 4–4 49 .

erdecchia, R. , Guldner, A. , Becker, Y. , Kern, E. , 2018. Code-level energy hotspot lo-
calization via naive spectrum based testing. In: Bungartz, H.-J., Kranzlmüller, D.,

Weinberg, V., Weismüller, J., Wohlgemuth, V. (Eds.), Advances and New
Trends in Environmental Informatics. Springer International Publishing, Cham,

pp. 111–130 .

ilke, C. , Richly, S. , Gotz, S. , Piechnick, C. , Aßmann, U. , 2013. Energy consumption
and efficiency in mobile applications: a user feedback study. In: Proceedings of

the Green Computing and Communications (GreenCom), 2013 IEEE and Internet
of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber,

Physical and Social Computing. IEEE, pp. 134–141 .
uki, T. , Rajopadhye, S. , 2014. Folklore confirmed: Compiling for speed = compiling

for energy. In: Proceedings of the Languages and Compilers for Parallel Com-

puting. Springer, pp. 169–184 .
hang, C. , Hindle, A. , German, D.M. , 2014. The impact of user choice on energy con-

sumption. IEEE Softw. 31 (3), 69–75 .

Rui Pereira Rui Pereira is currently an invited Assis-

tant Professor Assistant at the University of Minho, and
a Post doc researcher at the High-Assurance Software

Laboratory (INESC Tec & HASLab) HASLab/INESC Tec and
C4 Centro de Competências em Cloud Computing (C4-

UBI). He received his MSc degree in Informatics Engineer-
ing in 2013, with the thesis “Querying for Model-Driven

Spreadsheets” under the SpreadSheets as a Programming
Paradigm (SSaaPP) project. In 2019, he obtained his PhD

degree in Computer Science from Universidade do Minho

with the thesis titled “Energyware Engineering: Tech-
niques and Tools for Green Software Development”. He

continues working on reducing, analyzing, and optimiz-
ng the energy consumption levels for software, by using source code analysis and

anipulation techniques. He was also awarded an FCT grant for his Ph.D. research
nd is one of the founding members of the Green Software for Space Control Mis-
ion (GreenSSCM) project, the Software Repositories for Green Computing FLAD/NSF

roject, and the Green Software Lab: Green Computing as an Engineering Discipline
roject and research group (GSL).

Tiago Carção is currently Head of Technology at Agentifai,

an Artificial Intelligence based company that offers a per-

sonal digital assistants to mediate Healthcare Providers
and patients. He obtained a M.Sc. degree from University

do Minho in 2014 with his thesis “Spectrum-based Energy
Leak Localization”. During the M.Sc. his research inter-

ests were centered around energy-aware Software Devel-
opment and tools to aid this process. Currently his main

focus is in the Artificial Intelligence field and in Software

Architecture topics, specifically architect software for fail-
ure.

Marco Couto Marco Couto completed his MsC degree
in Informatics Engineering in 2014, with a thesis enti-

tled “Monitoring Energy Consumption in Android Applica-
tions”, with a scholarship in a project called GreenSSCM

Green Software for Space Control Missions, at the Uni-

versity of Minho. He is mainly focused in researching
tools and methodologies to reason about software, more

precisely regarding its non-functional properties. He has
been an active member in initiative such as Green Sw

Lab (which he helped found) and GreenHub. Currently, he
is finishing his PhD in the MAP-i doctoral program, with

his thesis project named “Energy-aware Software Product

Lines”. His contributions have been described in several
onference publications in international high quality venues.

Jácome Cunha is currently an Assistant Professor at Uni-

versity of Minho, Department of Informatics, and an inte-
grated member of the research center NOVA LINCS. His

research is mainly focused on Programming Languages

(PLs) and Software Engineering (SE), where he tries to
improve the effectiveness, efficiency, and usability of soft-

ware. I have contributed with such techniques for spread-
sheets, and for improving software energy consumption.

He obtained his PhD degree in Computer Science from
Universidade do Minho in 2011. He was then a post-

doctoral fellow at Universidade do Minho and Oregon
State University. He was also an Invited Professor at Es-

cola Superior de Tecnologia e Gestão de Felgueiras - In-

tituto Politécnico do Porto. From 2014 to 2018 he was Assistant Professor at NOVA
niversity of Lisbon.

João Paulo Fernandes João Paulo Fernandes is an Assis-

tant Professor at the Informatics Engineering Department

of the University of Coimbra, Portugal. His research is fo-
cused on the rigorous analysis and transformation of soft-

ware, with the goal of optimizing its non-functional prop-
erties while still ensuring its functional correctness. His

attention has especially been drawn to optimizing the en-
ergy efficiency of software systems, an area in which he

tries to provide developers with information and tools

to support the development of energy efficient software
and at the same time that he seeks to support end users,

namely of mobile devices, in adopting more efficient us-
age patterns. In these contexts, he has founded and/or is

nvolved in projects and initiatives such as GreenHub, Green Sw Lab and Green-
askell. He is also a member of the Center for Informatics and Systems of the Uni-

ersity of Coimbra (CISUC). He has graduated in Mathematics and Computer Sci-

nce from the University of Minho, in 2004 (best of class, with an averase score of
7/20). Later, in March 2009, he received his Ph.D. degree from the same univer-

ity, following his work on the Design, Implementation and Calculation of Circular
rograms.

João Saraiva João Saraiva is an Associate Professor at

the Departmento de Informática, Universidade do Minho,

Braga, Portugal, and a senior researcher member of
HASLab/INESC TEC.He obtained a M.Sc. degree from Uni-

versity do Minho in 1993 and a Ph.D. degree in Com-
puter Science from Utrecht University in 1999. His main

research contributions have been in the field of pro-
gramming languages design and implementation, pro-

gram analysis and transformation, and functional pro-

gramming. He supervised 4 PostDoc projects, 11 Ph.D.
projects (7 awarded and 4 running) and over 40 M.Sc.

thesis. He counts with over 100 international publica-
tions, he has served in over 80.

https://doi.org/10.1109/ICSE-C.penalty -@M 2017.80
https://doi.org/10.1145/3136014.3136031
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0063
https://doi.org/10.1109/ICSME.2016.34
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0070
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0071
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0071
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0072
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0072
https://doi.org/10.1145/2652524.2652538
https://doi.org/10.1002/smr.1762
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0076
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0077
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0079
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0079
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0079
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0080
http://refhub.elsevier.com/S0164-1212(19)30237-7/sbref0080

	SPELLing out energy leaks: Aiding developers locate energy inefficient code
	1 Introduction
	2 Spectrum-based energy leak localization
	2.1 Spectrum-based fault localization
	2.2 Static model formalization
	2.3 Energy leak localization
	2.4 An example

	3 SPELL toolkit
	4 Empirical evaluation
	4.1 Experimental setup
	4.2 Execution
	4.3 Results
	4.4 Discussion
	4.5 Looking back with DRAM
	4.6 Threats to validity

	5 Related work
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

