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ABSTRACT
This paper introduces the concept of energy debt: a new metric,
reflecting the implied cost in terms of energy consumption over
time, of choosing a flawed implementation of a software system
rather than amore robust, yet possibly time consuming, approach. A
flawed implementation is considered to contain code smells, known
to have a negative influence on the energy consumption.

Similar to technical debt, if energy debt is not properly addressed,
it can accumulate an energy “interest”. This interest will keep in-
creasing as new versions of the software are released, and eventually
reach a point where the interest will be higher than the initial en-
ergy debt. Addressing the issues/smells at such a point can remove
energy debt, at the cost of having already consumed a significant
amount of energy which can translate into high costs.

We present all underlying concepts of energy debt, bridging the
connection with the existing concept of technical debt. We describe
our approach with a preliminary motivational example, showing
how to compute the energy debt of a real-world application. A pro-
totype is under development, which already includes the detection
of several Android energy smells, and calculates the energy debt
and energy interest of Android applications.
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• Software and its engineering→ Automated static analy-

sis; Software performance.
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1 INTRODUCTION
Technical Debt (TD) describes the gap between the current state of
a software system and the ideal state of that same software. The key
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idea of technical debt is that software systems may include artifacts
which can be hard to understand/maintain/evolve, causing higher
costs in the future software development andmaintenance activities.
These extra costs can be seen as a type of debt that developers owe
the software system.

Although technical debt is still a recent area of research, it has
gained significant attention over the past years: A recent system-
atic mapping study [25] identified ten different types of technical
debt, namely requirements, architectural, design, code, test, build,
documentation, infrastructure, versioning, and defects technical debt.
In fact, TD is a concern both for researchers and software devel-
opers. The current widespread use of non-wired computing de-
vices is also making energy consumption a key aspect not only
for hardware manufacturers, but also for researchers and software
developers [41]. Indeed, several energy inefficient programming
practices have been reported in literature, namely, energy patterns
for mobile applications [6, 9], the energy impact of code smells [4],
energy-greedy API usage patterns [27], energy (in)efficient data
structures [31, 37], programming languages [38], etc. which do have
significant impact on the energy consumption of software.

All these research works show that energy-greedy programming
practices, also called energy smells, do often occur in software
systems. These can be attributed to the current lack of knowledge
software developers have in order to build energy efficient software,
and the lack of supporting tools [42].

This paper defines energy debt as the additional estimated en-
ergy cost of executing a software system, due to the occurrence
of energy smells in the software’s source code, when compared
to the estimated energy cost of executing the non-energy smelly
(i.e. energy ideal) version of that same software. To express energy
debt we consider a set of energy code smells presented in the cur-
rent state of the art literature on green software, together with
the energy savings reported in the studies where such smells have
been presented. Thus, the energy debt of a program is computed
after knowing the number of occurrences and their locations in the
program’s source code: energy smells inside loops/recursion, single
statements, or inside dead code do have different debt weights. In
order to compute the energy debt of a software system, we have
implemented the automatic detection of the full catalog of energy
smells in a prototype tool, which is currently being ported to the
SonarQube framework. Moreover, we have conducted a preliminary
experiment of detecting energy smells and computing the evolu-
tion of the energy debt on consecutive releases of an open source
(GitHub) software system and this paper presents our very first
results.

https://doi.org/10.1145/1122445.1122456
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This paper is structured as follows: Section 2 thoroughly de-
scribes the notion of energy debt, and how it should be expressed/-
calculated; A preliminary/motivational example, where we ana-
lyzed the evolution of energy debt in a real-world open source
project, is described in Section 3; Section 4 presents the related
work; finally, our conclusions and future work are included in Sec-
tion 5.

2 INTRODUCING ENERGY DEBT CONCEPTS
In this section, we explain our definition of energy debt. We start by
presenting in Section 2.1 the general idea behind the energy debt
concept: what it is, under what assumptions can it be defined, and
what are the underlying concepts. After presenting the concepts,
we clarify each one in detail. First, we define how to express the
smells catalog, i.e., the considered must-fix problems and their
associated energy cost, we present an instantiation of such a catalog
(Section 2.2). Afterwards, in Section 2.3 we explain how the energy
debt can be estimated for a given software release version, using
the occurrences of smells found for a given release. Finally, we
discuss how this debt can be be transformed into interest with the
appearing of new releases, and how to estimate such an interest
(Section 2.4).

2.1 Concept Overview
Before we present the definition of energy debt, let us recall the
metaphor of technical debt. Technical debt reflects the cost arising
from performing additional work on a software system, due to
developers taking “shortcuts that fall short of best practices” [1].
In other words, this cost can be defined as the technical effort, in
working hours, required for fixing all issues associated with bad
programming practices, in a given software release. The cost keeps
increasing, as new versions (with new issues) keep getting released,
and if the initial issues are not properly addressed, they accumulate
interest [5].

Based on the underlying concept of technical debt, we define
Energy Debt as the amount of unnecessary energy that a software
system uses over time, due to maintaining energy code smells for
sustained periods.

A visual comparison of the two concepts is depicted in Figure 1.
The left-hand side of the figure illustrates the well-known represen-
tation of technical debt, including the concepts of refactoring and
maintenance effort, along with the definition of interest. On the
right-hand side we present the definition of energy debt, where we
assume that evolving the software (i.e., introducing new features on
new releases) will eventually result in the addition of new (energy)
code smells, hence the Energy Debt (𝐸𝐷) increases per version.

The main difference between technical and energy debt, at this
point, is the fact that the former can be presented as a unique cost
value expressing how much effort would be necessary to address
the issues, whereas the same approach cannot be applied to the
latter. The cost of maintaining energy code smells in a software
release is always directly proportional to the amount of time that
the same release operates. As an example, if two software systems
𝑆1 and 𝑆2 have the exact same energy code smells, the amount of
excessive energy consumed by 𝑆1 might be higher than 𝑆2 if it is
intended to be used longer, during the same timespan.
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Figure 1: Comparing Technical Debt and Energy Debt Termi-
nology

Given the previous assumptions, we argue that the energy debt
𝐸𝐷 of a software release must be expressed not as a cost value,
but as a cost function, which receives, as input, two variables: a
software release 𝑟 , and a usage time 𝑡 . Equation 1 defines such a
function, and it allows us to obtain, for a given release 𝑟 , its energy
debt 𝐸𝐷 after a given usage time of 𝑡 :

𝑒𝑑 (𝑟, 𝑡) = 𝑐𝑜𝑠𝑡 (𝑟 ) ∗ 𝑡 (1)

The 𝑐𝑜𝑠𝑡 (𝑟 ) function included in the equation represents the
energy cost of release 𝑟 , per unit of time. In other words, it relates
to the existing number of energy code smells in that version, and
the energy cost (per unit of time) of each one. The definition of that
function is expressed as Equation 2:

𝑐𝑜𝑠𝑡 (𝑟 ) =
𝑁∑
𝑖=1

𝑤𝑖 (𝑟 ) × 𝐸 (𝑖) (2)

Here, 𝑁 is the number of smells included in the considered smell
catalog, while 𝑤𝑖 (𝑟 ) returns a weight value for smell 𝑖 , which is
affected by the number of 𝑖 smells found in release 𝑟 and the context
in which they were found (we will discuss this with greater detail
in Section 2.3). 𝐸 (𝑖) returns the expected energy debt per time unit
of smell 𝑖 , as defined in the smell catalog.

The formulas presented thus far assume that each considered
energy code smell has an associated energy debt value, expressed
in function of time units (for instance, per minute). Nevertheless,
when studying the energy consumption impact of code smells,
researchers often tend to present the potential gains/savings as an
interval (i.e., highest and lowest observed energy saving). This is due
to the fact that measuring energy is not a completely deterministic
task, for example, the CPU/room temperature greatly affects energy
consumption.

Following the highest/lowest saving approach adds valuable
information regarding potential energy savings. A certain smell can
have a maximum savings of, for instance, 3000 mJ per minute, and
a minimum of 150 mJ per minute. When compared to another smell
with respective maximum and minimum savings of 900 mJ and 300
mJ per minute, we know that in a best-case scenario refactoring the
first one would result in higher gains, but in a worst-case scenario
the second smell presents better savings. Hence, a developer can
use this information to decide how to properly focus their attention
when refactoring code smells, depending on the project goals [6].
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In accordance with the previous assumption, we decided that
our approach for energy debt should consider, for each code smell,
two energy values: the highest (𝐸𝑚𝑎𝑥 ) and lowest (𝐸𝑚𝑖𝑛) observed
energy savings. Since energy debt must be expressed in a function
of the usage time, it is expected that 𝐸𝑚𝑎𝑥 will be much higher with
the increase of usage time, as depicted in Figure 2.
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Figure 2: Energy Debt Thresholds Increase Over Time

There are two represented versions of a release in this figure:
the optimal version, with all smells removed (𝐴′), and the energy
smelly version (𝐴). The optimal version already has a constantly
increasing energy consumption, as it would be expected. Energy
debt can be summed up as the area between the line for 𝐴′, and the
(red) line for 𝐴, which becomes much larger when considering the
maximum values. This will introduce changes to Equation 1, which
will consider two cost values, in the form of two functions:

𝑒𝑑 (𝑟, 𝑡) =
(
𝑐𝑜𝑠𝑡𝑚𝑖𝑛 (𝑟 ) × 𝑡 ; 𝑐𝑜𝑠𝑡𝑚𝑎𝑥 (𝑟 ) × 𝑡

)
(3)

The energy debt will therefore always be presented in the form
of an interval. Consequently, each of the cost functions will need
to refer to the proper energy debt per time unit. In other words, the
𝐸 (𝑖) function in Equation 2 will be 𝐸𝑚𝑖𝑛 (𝑖) for the lowest savings,
and 𝐸𝑚𝑎𝑥 (𝑖) for the highest savings.

Next, we introduce a catalog of code smells from current state-
of-the-art research, which contain a study an/or report of the code
smell’s energy impact. We excluded smells which did not provide
a way to infer a highest/lowest energy saving value per minute,
either because it was not reported by the authors or because the
raw results data was not publicly available.

2.2 The Smells Catalog
As previously explained, in order to report the technical debt of
a software system/release, it is necessary to consider a set of is-
sues and their severity in terms of refactoring time. Hence, for
our energy debt approach, the first step is to define those issues,
and the highest/lowest energy gain which can be obtained from
refactoring/removing each one.

The energy code smells catalog we consider has been reported in
the green software literture and is widely used and studied specifi-
cally within the Android ecosystem, where enery consumption is
one of the main software concerns. For each energy code smell, we
indicate where its energy impact was studied, a brief description
on why it has a negative influence on energy consumption, and the
corresponding reported maximum and minimum energy savings
in milliJoules per minute (𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛 , respectively).

DA - Draw Allocation.

• 𝐸𝑚𝑎𝑥 : 158𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 36𝑚𝐽 per minute

This is the first of five smells whose energy impact analysis
was included in [6, 9, 10]. The authors aimed at understanding
how fixing code patterns detected by Android lint1 can improve
energy efficiency. Lint’s issues are divided into categories, such as
Performance or Security. Draw Allocation, as well as the next 4
smells, is a Performance issue.

Draw Allocation occurs when new objects are allocated along
with draw operations, which are very sensitive to performance. In
other words, it is a bad practice to create objects inside the onDraw
method of a class which extends a View Android component, as we
see in the following snippet:
public class CloudMoonView extends View {

@Override
protected void onDraw(Canvas canvas) {

RectF rectF1 = new RectF(); ✘
...
if(! clockwise) {

rectF1.set(X2-r, Y2-r, X2+r, Y2+r);
...

} }

The recommended alternative for this smell is to move the allo-
cation of independent objects outside the method, turning it into a
static variable, as shown next:
public class CloudMoonView extends View {

RectF rectF1 = new RectF(); ✔
@Override
protected void onDraw(Canvas canvas) {

...
if(! clockwise) {

rectF1.set(X2-r, Y2-r, X2+r, Y2+r);
...

} }

WL - Wakelock.

• 𝐸𝑚𝑎𝑥 : 194𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 10𝑚𝐽 per minute

Wakelock is the second Android lint performance issue [6, 9, 10,
32, 49]. Essentially, lint detects whenever a wake lock, a mechanism
to control the power state of the device and prevent the screen
from turning off, is not properly released, or is used when it is not
necessary.

The following snippet shows an example of a wake lock being
acquired, but not released when the activity pauses.
public class DMFSetTempo extends Fragment {

PowerManager.WakeLock wakeLock;

public void onClickBtStart(View view) {
wakelock.acquire (); ✔

}

@Override ()
public void onPause () { super.onPause (); ✘ }
}

}

The alternative here would be to simply add a release instruc-
tion as shown next:
public class DMFSetTempo extends Fragment {

PowerManager.WakeLock wakeLock;

public void onClickBtStart(View view) {
wakelock.acquire (); ✔

}

1Lint is a code analysis tool, provided by the Android SDK, which reports
upon finding issues related with the code structural quality. Website: devel-
oper.android.com/studio/write/lint
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@Override ()
public void onPause () {

super.onPause ();
if (wakeLock.isHeld ()) wakeLock.release (); ✔

}
}

RC - Recycle.

• 𝐸𝑚𝑎𝑥 : 533𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 15𝑚𝐽 per minute

Recycle is another Android lint performance issue [6, 9, 10].
It detects when collections or database related objects, such as
TypedArrays or Cursors, are not recycled nor closed after being
used. When this happens, other objects of the same type cannot
efficiently use the same resources.

The following snippet shows a Cursor instance being used with-
out being recycled:
public Summoner getSummoner(int id) {

SQLiteDatabase db = this.getReadableDatabase ();

Cursor cursor = db.query(TABLE_FAV , new String [] { ... };
...
return summoner; ✘

}

The alternative in this case would be to include a close method
call before the method’s return:
public Summoner getSummoner(int id) {

SQLiteDatabase db = this.getReadableDatabase ();

Cursor cursor = db.query(TABLE_FAV , new String [] { ... };
...
c.close(); ✔
return summoner;

}

OLP - Obsolete Layout Parameter.

• 𝐸𝑚𝑎𝑥 : 561𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 94𝑚𝐽 per minute

The fourth Android lint performance issue [6, 9, 10], Obsolete
Layout Parameter, is the only one that is not Java-related. The
view layouts in Android are specified using XML, and they tend to
suffer several updates. As a consequence, some parameters that
have no effect in the viewmay still remain in the code, which causes
excessive processing at runtime. The alternative is to parse the XML
syntax tree and remove these useless parameters.

The next snippet shows an example of a view component with
parameters that can be removed:
<TextView android:id="@+id/centertext"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="remote files"
layout_centerVertical="true" ✘
layout_alignParentRight="true"> ✘

</TextView >

VH - View Holder.

• 𝐸𝑚𝑎𝑥 : 2105𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 892𝑚𝐽 per minute

View Holder is the last Android lint performance issue [6, 9,
10], whose alternative intends to make a smoother scroll in List
Views. The process of drawing all items in a List View is costly,
since they need to be drawn separately. However, it is possible to
make this more efficient by reusing data from already drawn items,
which reduces the number of calls to findViewById(), known to
be energy greedy [27].

In order to better describe this smell, we introduce the following
snippet:
public View getView(int pos , View cView , ViewGroup par) {

LayoutInflater inflater = (LayoutInflater) context
.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

cView = inflater.inflate(R.layout.apps , par , false);
TextView txt=( TextView) cView.findViewById(R.id.label); ❶
ImageView img=( ImageView) cView.findViewById(R.id.logo);❷
return row;

}

Every time getView() is called, the system searches on all the
view components for both the TextView with the id “label” (❶)
and the ImageView with the id “logo” (❷), using the energy greedy
method findViewById(). The alternative version is to cache the
desired view components, with the following approach:
static class ViewHolderItem {

TextView txtView; ImageView imgView;
}

public View getView(int pos , View cView , ViewGroup par) {
ViewHolderItem hld; LayoutInflater inflater = ...

if (cView == null) { ❸
cView = inflater.inflate (...);
hld = new ViewHolderItem ();
hld.txtView = (TextView) cView.findViewById (...); ❹
hld.imgView = (ImageView) cView.findViewById (...); ❺
cView.setTag(hld);

} else {
hld = (ViewHolderItem) cView.getTag (); ❻

}
TextView txt = hld.txtView; ImageView img = hld.imgView;
...

}

Condition ❸ evaluates to true only once, which means instruc-
tions ❹ and ❺ execute once, i.e., findViewById() executes twice,
and its results are stored in the ViewHolderItem instance. The
following calls to getView() will use cached values for the view
components txt and img (❻).

HMU - HashMap Usage.

• 𝐸𝑚𝑎𝑥 : 229𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 28𝑚𝐽 per minute

This smell is related to the usage of the HashMap collection [4, 6,
30, 32, 44]. In fact, as stated in the Android documentation page, the
usage of HashMap is discouraged, since the alternative ArrayMap
is allegedly more energy-efficient, without decreasing the perfor-
mance of map operations2.

The alternative is to simply replace the type HashMap, whenever
it is used, with ArrayMap.

EMC - Excessive Method Calls.

• 𝐸𝑚𝑎𝑥 : 9529𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 557𝑚𝐽 per minute

Unnecessarily calling a method can penalize performance, since
a call usually involves pushing arguments to the call stack, storing
the return value in the appropriate processor’s register, and clean-
ing the stack afterwards. This penalty was explored by [4, 6, 22],
showing that the energy consumption in Android applications can
be decreased by removing method calls inside loops that can be
extracted from them. An example of an extractable method call
would be one which receives no arguments, and is accessed by an
object that is not altered in any way inside the loop.

2ArrayMap documentation: http://bit.ly/32hK0y9.

http://bit.ly/32hK0y9
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The alternative is to replace the method call by a variable that is
declared outside the loop, and is initialized with the return value of
the method call extracted.

MIM - Member Ignoring Method.

• 𝐸𝑚𝑎𝑥 : 7844𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 88𝑚𝐽 per minute

This smell addresses the issue of having a non-static method
inside a class, and which could be static instead [4, 6, 32], i.e., it does
not access any class fields, it does not directly invoke non-static
methods, and it is not an overriding method. Static methods are
stored in a memory block separated from where objects are stored,
and no matter how many class instances are created throughout
the program’s execution, only an instance of such method will
be created and used. This mechanism helps in reducing energy
consumption.

2.3 Counting Expenses & Estimating Debt
With a defined energy smell catalog, the next step is to define a
strategy to analyze the occurrence of such smells in a given release.
The starting point for this task will be to use a common source code
analysis tool capable of detecting code smells. There are several
ways to achieve this. For instance, SonarQube3, which is a widely
used tool for technical debt estimation, provides an API for defining
detection rules for issues/smells of different languages.4

Detecting the occurrence of a smell, however, is a necessary
but not the sole requirement to properly analyze its impact on
energy debt. A smell can be detected, for instance, inside a block
of dead/unreachable code, or it can be placed inside a procedure
which may only be executed once in a software lifecycle (eg. an
initial setup). On the other hand, a code smell can also be part of
a mechanism designed to be re-utilized several times, such as a
loop, a thread, or a Service (very common in Android). These kind
of scenarios should be considered when estimating energy debt,
and since our energy debt approach implies the usage of statical
analysis mechanisms, we can follow already defined strategies for
static energy analysis.

A very common and well-established approach for these situ-
ations is to define weights for smells, depending on the context
on which they are found. For instance, Oliveira et al. [31] and Jab-
barvand et al. [19] defined two different strategies for weighing
instructions which might be repeated. The former considers the
number of times that a given instruction is found in every path in
the program call graph. From the call graph, it also accounts for
how many occurences are included inside loops; it then defines a
heuristic to weigh the energy impact of such instructions in the pro-
gram under analysis. The latter starts by extracting the full method
call graph of a program, and for each method, provides an energy
score; such a score depends on three things: (i) how many paths
can be taken to reach that node from the root node, (ii) whether
it is found inside a loop, and if so (iii) what is the expected loop’s
bound (if it is possible to infer, otherwise they use a default param-
eterized one); this statically obtained information is then used to
increase/decrease the energy score of the node.
3SonarQube webpage: http://www.sonarqube.org.
4Adding Coding Rules webpage: https://docs.sonarqube.org/latest/extend/adding-
coding-rules/

Several strategies have been suggested for this task, all of which
have been accepted by the community and have promising results.
This leads us to believe that, although it is important to weigh code
smells depending on the context in which they are detected, several
factors can influence the decision on what approach to follow (eg.,
the amount of information that can be extracted from the smell
detection tool, or balancing information detail with the time it takes
to run the analysis). Hence, we argue that the followed strategy
is also context dependent, and can also be parameterized to be as
simple or detailed as desired. Nevertheless, whatever approach one
follows, an update to Equation 2 is necessary to consider it. As an
example, we will consider a simplified version of the strategy from
Jabbarvand et al. [19]:

𝑤 (𝑖, 𝑟 ) =
𝐶∑
𝑗=1

𝑝𝑎𝑡ℎ𝑠 ( 𝑗) × 𝐿𝐵 (4)

In this equation:
• 𝐶 is the number of 𝑖 smells found in the release 𝑟 ;
• 𝑝𝑎𝑡ℎ𝑠 ( 𝑗) represents the number of paths in the call graph
through which the 𝑗𝑡ℎ occurrence of smell 𝑖 is reachable;

• 𝐿𝐵 will be 1 if the 𝑗𝑡ℎ of the smell is outside a loop, or
a constant indicating the loop bound; it can be inferred if
possible, or pre-established.

In order to better explain how all these concepts connect with
each other, when aiming at estimating the energy debt of different
software releases, we have prepared a running example, depicted in
Figure 3. In this example, we have a catalog with 3 smells, each one
with the energy gains thresholds defined (values are in milliJoules
per minute), and 3 releases with the analysis report for each. The
report is a list of the detected smells, where for each one there is
information regarding (i) the number of paths through which the
smell is reachable (𝑝𝑎𝑡ℎ𝑠), and (ii) whether it was found inside a
loop (𝐿𝐵 > 1) or not (𝐿𝐵 = 1).
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Figure 3: Estimating Energy Debt per Release

Using the formula from Equation 4, we can determine the weight
to be applied to each smell. For example, for release 𝑣1, the weights
for smell 𝑠1 and 𝑠2 would be:

𝑤 (𝑠1, 𝑣1) = (2 × 1) + (1 × 10) = 12
𝑤 (𝑠2, 𝑣1) = (2 × 1) = 2

We can then apply the computed weights in the formula from
Equation 1, in order to obtain an estimated value for the energy debt
of release 𝑣1. As previously mentioned, our energy debt definition
considers two reference values: the lowest and highest estimated

http://www.sonarqube.org
https://docs.sonarqube.org/latest/extend/adding-coding-rules/
https://docs.sonarqube.org/latest/extend/adding-coding-rules/
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energy debt. This means that the 𝑐𝑜𝑠𝑡 function in Equation 2 must
be computed twice: the first using the lowest estimated gains per
smell (𝐸𝑚𝑖𝑛), and the second using the highest (𝐸𝑚𝑎𝑥 ). Once again,
for release 𝑣1, we would have the following 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 and 𝑐𝑜𝑠𝑡𝑚𝑎𝑥

values:

𝑐𝑜𝑠𝑡𝑚𝑖𝑛 (𝑣1) = (𝑤 (𝑠1, 𝑣1) × 𝐸𝑚𝑖𝑛 (𝑠1)) + (𝑤 (𝑠2, 𝑣1) × 𝐸𝑚𝑖𝑛 (𝑠2))
⇔ 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 (𝑣1) = (12 × 2) + (2 × 4) = 32

𝑐𝑜𝑠𝑡𝑚𝑎𝑥 (𝑣1) = (𝑤 (𝑠1, 𝑣1) × 𝐸𝑚𝑎𝑥 (𝑠1)) + (𝑤 (𝑠2, 𝑣1) × 𝐸𝑚𝑎𝑥 (𝑠2))
⇔ 𝑐𝑜𝑠𝑡𝑚𝑎𝑥 (𝑣1) = (12 × 10) + (2 × 8) = 136

These two reference values represent the energy debt for release
𝑣1. This means that energy debt can vary from a minimum of 32 to
a maximum of 136 milliJoules per minute. As explained previously,
energy debt is expressed as a function of usage time. Therefore, if
one wants to know how much debt this release accumulates after
being used for, e.g., one hour, this can be estimated as follows:

1ℎ = 60𝑚𝑖𝑛

𝑒𝑑 (𝑣1, 60𝑚𝑖𝑛) =
(
𝑐𝑜𝑠𝑡𝑚𝑖𝑛 (𝑣1) × 60; 𝑐𝑜𝑠𝑡𝑚𝑎𝑥 (𝑣1) × 60

)
⇔ 𝑒𝑑 (𝑣1, 60𝑚𝑖𝑛) =

(
1, 920𝑚𝐽 ; 8, 160𝑚𝐽

)
The estimated values indicate an energy debt varying between

1.92 and 8.16 Joules per hour. This means that, for every hour that
release 𝑣1 is being used, it could be consuming at least 1.92𝐽 less,
and the savings could be up to 8.16𝐽 .

Finally, it is important to point out that the accuracy of the esti-
mated thresholds rely on the adequacy/robustness of the analysis
components, namely the smells catalog, the code analysis tool, and
the weighing function for repeated smell’s executions. It is possible
to use our energy debt approach to compute reference values for the
energy inefficiency of a release, rather then to produce extremely
accurate estimates of the potential energy savings per usage time.
It depends on how one wants to apply the concept.

2.4 Paying Interests
The concept of interest in technical debt has already been formu-
lated [5], and its practical application has also been studied [2, 3, 48].
The concept is based on the fact that, as a software system evolves
(i.e., new versions are released), the cost/effort of adding features
to a new release (maintenance effort, expressed as working hours)
keeps increasing if the task of addressing the technical debt keeps
being ignored/postponed. Maintaining a release with technical debt
requires more effort than to maintain the same release without it;
the effort difference between the two is what is called the technical
debt interest.

The left-hand side of Figure 1 illustrates the interest concept.
There is a software version,𝐴, containing code smells, and therefore
technical debt. At this point, a decision can be made on what to
prioritize: (i) invest effort in fixing the smells (repayment effort) and
release an optimal version of that release, 𝐴′, without technical
debt, or (ii) release the version as it is, without dealing with the

smells. If the priority is (ii), then the effort of maintaining/evolving
to a new release 𝐵 will be higher than if the priority was (i). This
additional effort could be avoided, but the priority was releasing a
new version, which can happen for a wide variety of reasons (e.g.
client demands, faster market reach, etc.); this resembles the idea
of accumulation of debt, and debt needs to be re-payed.

Chatzigeorgiou et al. [5] presented a technique to predict the
technical debt breaking point, i.e., when will the accumulated in-
terest be higher than the initial effort to remove the technical debt
(i.e., from the initial release, which is called principal). With this
approach, it is possible to present developers with another choice:
if technical debt is not addressed now, and it keeps being “ignored”,
then they have approximately until release number 𝑁 to properly
deal with it; otherwise, from that moment on, the additional main-
tenance effort, arising from not dealing with technical debt, will
always be higher than the effort to deal with the principal. This
ultimately means that, at that point, they are wasting development
time.

time/release

Interest1

Interest2

MIN

v1 v2 v30

32
37

57
E
D

Figure 4: Accumulation of Interest

When considering energy instead of technical debt, the concept
of interest needs a different approach to be defined. For starters, it
will not tell developers (or project managers) how much additional
maintenance effort is being applied. This is due to the fact that
energy debt does not measure effort, but the drain of a particular
resource. In that sense, the energy debt interest is the amount of
excessively consumed energy over time, that could be avoided if the
issues which caused it were properly addressed earlier. In simple
terms, it is the accumulated energy debt after 𝑛 software releases.
This concept complements energy debt in the sense that it can be
used to estimate the "real-world" cost of not fixing the smells, which
can be (for instance) monetary (since there is always a monetary
cost associated with energy) or uptime related (if the software under
analysis is targeted for all kinds of mobile devices).

Figure 4 illustrates our perception of interest within energy debt,
using the running example from Figure 3. Once again, three soft-
ware releases are included here (𝑣1, 𝑣2, and 𝑣3), and the presented
values refer to the minimum estimated debt. For this particular
example, we are assuming that, as new versions are released, the
issues from previous versions are not addressed in any way. Hence,
the energy debt is always increasing. For the initial release, 𝑣1, we
consider that no interest was accumulated thus far. This is due
to the fact that energy debt is estimated in function of the usage
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time, so at the exact instant when the version was released, it was
certainly never used.

Considering releases 𝑣2 and 𝑣3, we can compute the interest for
each one. Starting from 𝑣2, it was reported that this release added a
new smell 𝑠3. If all smells from its previous version, 𝑣1, were fixed
upon releasing 𝑣1, then this version’s minimum energy debt would
be 5. However, since 𝑣1 contained smells, from the time interval
comprised between the two releases, the software was excessively
consuming 32mJ for each minute it was being used (i.e., the energy
debt from 𝑣1). Therefore, for release 𝑣2, the accumulated debt (i.e.,
the interest) is exactly 32 mJ per minute.

When considering release 𝑣3, however, the reasoning to infer the
interest requires adjustments. For once, 𝑣3 has two predecessors,
while 𝑣2 has only one. Between 𝑣1 and 𝑣2, the energy debt was
32, and between 𝑣2 and 𝑣3 it was 37, so the amount of excessively
consumed energy over time was not always the same. To estimate
how much debt was accumulated, we should infer a value based on
the two. One possible way to tackle this is to compute the average
of all energy debts from previous releases. In this particular case,
the minimum accumulated interest would be (32+37)

2 = 34.5.
Following the presented approach for interest estimation might

seem over-simplified at first, but it is a fair portrayal of debt repay-
ment. On one hand, if the energy debt always keeps increasing with
new releases, the interest will also keep increasing. On the other
hand, if it is gradually reduced, the accumulated interest will also
be reduced, which will ultimately mean that the initial debt is being
re-payed. Finally, it is important to interpret interest similar to how
energy debt is interpreted: an interval describing the minimum/-
maximum energy being excessively consumed per usage time.
With this, we argue that, when considering the interest for the 𝑛𝑡ℎ
release, the expected usage time should be higher than the one for
any𝑚𝑡ℎ release, where 𝑛 > 𝑚. Therefore it is guarantee that, even
though the energy debt can be reduced from one release to another,
the accumulated interest will be inflated for later releases.

3 PRELIMINARY EXPERIMENT
At this point, we have already presented the concepts which define
energy debt. In order to validate this concept, this section will
describe an experiment performed over an existing software system,
retrieved from GitHub, where we estimate the energy debt for
all its releases. We start by presenting the software used for the
experiment and the used approach for detecting the energy code
smells(Section 3.1); afterwards, having detected the energy smells,
we applied an energy debt analysis on each of the software’s releases
and present the obtained results (Section 3.2).

3.1 The Experimental Software System
In order to fully showcase the energy debt analysis described in
the previous sections, we obtained a software system to use for a
preliminary experiment, which followed two main requirements.
First, it needed to be a system with several explicit releases. This
way we could analyze the evolution of energy debt over time, and
also present the energy interest values for each release. Second, it
must be an Android application. This is due to the fact that 5 of
the smells in our catalog are Android specific, and we wanted to
explore the catalog as much as possible.

versions
v0.4 v0.5 v0.6 v0.7 v0.8

smell
count

OLP: 5 OLP: 9 K OLP: 12 K OLP: 17 K OLP: 17
EMC: 1 EMC: 2 K EMC: 1 L EMC: 1 EMC: 1

HMU: 8 HMU: 8 HMU: 8
MIM: 2 MIM: 3 K MIM: 3

Table 1: Detected smells on EscapeApp releases

We searched for applications onGitHub, as it is a well-known and
widely used platform to host open-source projects. Using GitHub’s
search engine, we searched for repositories with two characteris-
tics: (i) the repository’s main language should be Java, as it is the
development language for Android, and (ii) there should be specific
references to the Android framework (i.e., Java imports to Android
APIs, since we were filtering projects by code). GitHub’s search
engine only allows the retrieval of the first 1000 search results,
hence we only selected the repositories referenced in those 1000
results containing several releases of Android applications.

With the filtered Android applications, the next step was to
decide onwhich one to use for the experiment. Applicationswithout
smells had no interest to be analyzed, so defining an approach
for detecting smells was necessary at this point. For this purpose,
we used our tool called eSmell Tracker5, which is an extension to
lint6, the code inspection tool for Android. Lint has already built-in
detection rules for 5 of the 8 smells in our catalog, thus we developed
new rules for the remaining 3 smells. Our tool runs an optimized
lint check on an Android application’s code (i.e., only searching
for the 8 energy smells, instead of performing a full analysis), and
processes the output to indicate how many occurrences of each
smell were found.

After performing the lint analysis on all releases from the ob-
tained Android applications, we selected the application with (i) a
fluctuating number of smells per release and (ii) the highest number
of smells detected in the latest release. The application that met this
criteria was the EscapeApp7, a client application used for a virtual
reality escape game, which had 5 explicit releases. Table 1 presents
the results of the lint analysis for this application. For each release,
we indicate the number of occurrences of each detected smell, and
how that number varied from the previous release.

3.2 Energy Debt Analysis
The smell detection performed onEscapeApp only provided the list
of existing smells on each release. The lint tool does not offer a
built-in mechanism to report the context of each detected smell,
so information such as loop bounds could not be obtained auto-
matically. As previously explained in Section 2.3, this information
enhances the energy debt analysis. Thus we performed this anal-
ysis manually for each release and looked at each smell report to
determine if it was being used witin a loop. If so, a loop bound value
was inferred considering the loop’s code. Although we argue that it
is not critical to have this analysis in order to estimate energy debt,
for the SonarQube extension that we are working on, we intend
5eSmell Tracker webpage: (omitted to preserve anonymity).
6Lint webpage: http://tools.android.com/tips/lint.
7EscapeApp code: https://github.com/alanvanrossum/kroketapp.

http://tools.android.com/tips/lint
https://github.com/alanvanrossum/kroketapp
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to include the smell detection with context information regarding
reachable paths and loop bounds inference to further enhance the
analysis.

Based on the report presented in Table 1 and the manual code
inspection performed, we can estimate the energy debt interval for
each release. For instance, after inspecting each smell occurrence
in release 𝑣0.4, we realized that the EMC smell was the only one
found within a loop. After carefully inspecting and understanding
the code, we estimated a loop bound of 10 iterations. Hence, the
𝑐𝑜𝑠𝑡𝑚𝑖𝑛 and 𝑐𝑜𝑠𝑡𝑚𝑎𝑥 values for release 𝑣0.4 can be calculated as
follows:

𝑐𝑜𝑠𝑡𝑚𝑖𝑛 (𝑣0.4) = (5 × 𝐸𝑚𝑖𝑛 (𝑂𝐿𝑃)) + (𝑤𝐸𝑀𝐶 × 𝐸𝑚𝑖𝑛 (𝐸𝑀𝐶))
⇔ 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 (𝑣0.4) = 5 × 94 + 10 × 557

⇔ 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 (𝑣0.4) = 5, 027𝑚𝐽 (𝑝𝑒𝑟 𝑚𝑖𝑛)

𝑐𝑜𝑠𝑡𝑚𝑎𝑥 (𝑣0.4) = (5 × 𝐸𝑚𝑎𝑥 (𝑂𝐿𝑃)) + 𝐸𝑚𝑎𝑥 (𝐸𝑀𝐶)
⇔ 𝑐𝑜𝑠𝑡𝑚𝑎𝑥 (𝑣0.4) = 5 × 561 + 10 × 9529
⇔ 𝑐𝑜𝑠𝑡𝑚𝑎𝑥 (𝑣0.4) = 98, 095𝑚𝐽 (𝑝𝑒𝑟 𝑚𝑖𝑛)

The computed energy debt for each of the 5 versions is illustrated
in Figure 5. As expected, the energy debt increases from release 𝑣0.4
to 𝑣0.5, as the total number of smells also increases. An interesting
aspect, however, is the fact that the energy debt decreases after
release 𝑣0.5. If we look at the detection report on Table 1, we see that
it has 2 EMC smells. This smell has the highest value for maximum
energy debt. It is also the smell with the highest weight, since it
is always found inside loops. In that sense, addressing this smell
before releasing 𝑣0.6 eventually payed off, even though other smells
were introduced.

Nevertheless, it is important to also look at the concrete values
of both the maximum and minimum energy debt. From release 𝑣0.5
to 𝑣0.6, energy debt might be reduced at most by ≈ 68 𝐽 , which
is a considerable improvement. It is, however, the most profitable
scenario in potential, and if we consider a more cautious analysis
to the data (i.e., looking at the minimum energy debt variations) we
can see that energy debt might only reduced by ≈ 4 𝐽 . Once again,
it is up to the developers and/or product managers to decide how
they look at the trade-off between refactoring effort and potential
energy savings.

Estimating the accumulated interest for each release is also a
straightforward task. If we consider, for example, releases 𝑣0.5 and
0.7, the minimum interest would be 6.04 𝐽 per minute for the former,
and 8.67 𝐽 per minute for the latter, as the following calculations
demonstrate:

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑣0.5) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑒𝑑 (𝑣0.4)) =
(
6.04 𝐽 ; 98.095 𝐽

)
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑣0.7) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑒𝑑 (𝑣0.4), 𝑒𝑑 (𝑣0.5), 𝑒𝑑 (𝑣0.6))

⇔ 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑣0.7) =
(
8.67 𝐽 ; 140.198 𝐽

)
With these reference values, one could easily provide an esti-

mate on how much energy was excessively consumed since the
first release until release 𝑣0.5/𝑣 .07. Let us assume that the total

amount of time an application is estimated to be used between
these releases was, for instance, 5 full days (120 hours or 7, 200
minutes). This would mean that when 𝑣0.5 was released, the en-
ergy debt interest would vary between a minimum of 43, 488 𝐽 ,
to a maximum of 706, 284 𝐽 . When considering 𝑣0.7, with 3 prior
releases, the expected usage time increases by: 3 × 7, 200 = 21, 600
minutes. Therefore, the interest values increase significantly as
expected: a minimum of 187, 272 𝐽 and a maximum of 3, 028, 276 𝐽 .
Even though this is merely a motivational case study, it is safe to
consider that neglecting the energy debt for several releases proves
to be highly costly.

4 RELATEDWORK
Technical debt is a term which refers to the pitfalls of creating
sub-optimal software to fit a shorter interval, introduced by Cun-
ningham [13]. This is a common practice employed to meet short
term development deadlines, with the intent of completing it at a
later time. As software evolves, it’s liable to take on debt from sev-
eral sources: “technological obsolescence, change of environment,
rapid commercial success, advent of new and better technologies,
and so on — in other words, the invisible aspects of natural software
aging and evolution.” [21]. However, more mundane issues can also
plague software development, born out of poor coding practices
or general ignorance, bringing about many different aspects to
technical debt [47].

As already known, allowing technical debt to continuously build
up without a level of debt management raises the risk of producing
unmanageable and inefficient code, which can hamper the addi-
tion of new or updating existing functionalities. This makes it so
the longer such code goes unattended, the more resources will be
needed to correct it and with diminishing returns [5].

One such inefficiency in software is of high energy consumption.
In fact, the profiling, analyzing and improving the energy efficiency
of software has become a vey active research field. Studies have
shown that developers are aware of the energy consumption prob-
lem, and often times seek help in solving such issues [28, 34, 41, 42].
Currently, there is a broad range of work done on understanding
what aspects in programming languages can contribute to high
energy costs such as different data structures [15, 26, 37, 39, 40],
languages [7, 38], memoization [43], design patterns [45], code
refactoring [46, 50], and even the testing phase [24].

Specific to the Android ecosystem, there has been research in
topics such as the classification of Android applications as being
more/less energy efficient [19], identifying energy green APIs [27],
estimating energy consumption in code fragments [8, 18], etc. In
fact, research in the reduction of energy consumption in the An-
droid system is most likely the most explored environment in this
research field over the past decade [4, 9–12, 20, 22, 30, 32, 44, 49].
The results of most of these studies are able to quickly translate
into our energy smell catalog to be used in the calculation of energy
debt.

Additionally, much research has been conducted in providing
several approaches to the measurement of energy consumption. For
example for Android energy analysis there is: eCalc [14], vLens [23],
eProf [33], Trepn[16–19]. There is also work in automatic tools to
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Figure 5: Minimum and Maximum Energy Debt for EscapeApp releases

help detect energy greedy code spots [35, 36], automatically refac-
toring for the most energy efficient data structure [29, 39], or auto-
matically refactoring energy greedy Android patterns [4, 6, 10].

The aforementioned works on the different approaches or tools
to reduce the energy consumption of software systems, regardless of
their novelty and contributions, do not yet translate their potential
gains across a period of time into the actual energy savings (or
energy costs) a developer or business can have on his/her software
by applying such transformations. It is our belief that, with this
work, we have helped close this gap in not only knowing if an
alternative solution is more energy efficient, but by how much can
we save (in energy consumption or even monetary savings) over
time if and when we adopt the energy efficient alternative.

5 CONCLUSIONS AND FUTUREWORK
This paper presented the concept of energy debt as the additional
energy cost over time of a software system due to the occurrences of
energy code smells in its source code. We have presented a catalog
of reported state-of-the-art energy code smells, their known energy
costs per usage time, and have expressed energy debt as a function
considering (i) the number of smells, (ii) the context in which they
were detected, and (iii) the expected usage time of the application.
Energy debt interest is also expressed as the accumulation of energy
debt per release, which could be avoided by eliminating energy
smells in previous releases.

The automatic detection of the presented energy code smells,
and the computation of energy debt and interest, has been achieved
using our eBugs Tracker tool. This tool was used to perform our
very first experiment: an analysis on the evolution of energy debt

and interest of the EscapeApp, a real open source software applica-
tion which contains four different smells with more than twenty
occurrences spread over five releases. Our tool is now being ex-
temded into the SonarQube framework, where it will support the
inference of the context of detected smells.

The smell catalog which we consider will also be updated with
more energy code smells. While the energy impact of code smells
is a broad research subject, several research studies do not present
enough data to infer energy gain values per usage time. Thus, we
focused on two recent studies which presented the energy savings
of correctin certain code smells presented in other studies. The
accuracy of energy debt estimation can be enhanced if the smells’
gains are standardized, to which we plan to improve the catalog to
properly address this.
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