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ABSTRACT
This paper extends previous work on the concept of a new software
energymetric: Energy Debt. This metric is a reflection on the implied
cost, in terms of energy consumption over time, of choosing an
energy flawed software implementation over a more robust and
efficient, yet time consuming, approach.

This paper presents the implementation a SonarQube tool called
E-Debitumwhich calculates the energy debt of Android applications
throughout their versions. This plugin uses a robust, well defined,
and extendable smell catalog based on current green software lit-
erature, with each smell defining the potential energy savings. To
conclude, an experimental validation of E-Debitum was executed
on 3 popular Android applications with various releases, showing
how their energy debt fluctuated throughout releases.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis;
Software performance.
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1 INTRODUCTION
Technical Debt (TD) describes the gap between the current state and
the ideal state of a software system. The key idea of technical debt is
that software systems may include hard to understand/maintain/e-
volve artefacts, causing higher costs in the future development and
maintenance activities. These extra costs can be seen as a type of
debt that developers owe the software system.

Although technical debt is still a recent area of research, it has
gained significant attention over the past years: A recent system-
atic mapping study [27] identified ten different types of technical
debt, namely requirements, architectural, design, code, test, build,
documentation, infrastructure, versioning, and defects technical debt.
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In fact, TD is a concern both for researchers and software devel-
opers. The current widespread use of non-wired computing de-
vices is also making energy consumption a key aspect not only
for hardware manufacturers, but also for researchers and software
developers [42]. Indeed, several energy inefficient programming
practices have been reported in literature, namely, energy patterns
for mobile applications [8, 12], the energy impact of code smells [4],
energy-greedy API usage patterns [29], energy (in)efficient data
structures [33, 38], programming languages [39], etc. which do have
significant impact on the energy consumption of software.

All these research works show that energy-greedy programming
practices, also called energy smells, do often occur in software
systems. These can be attributed to the current lack of knowledge
software developers have in order to build energy efficient software,
and the lack of supporting tools [43].

This paper is based off work on energy debt [9], a metric to
estimate the energy cost of executing a software system, due to the
occurrence of energy smells in the software’s source code, when
compared to the estimated energy cost of executing the non-energy
smelly (i.e. energy ideal) version of that same software.

Our contribution in this paper is three-fold: a) We thoroughly
define a robust and extendable Android smell catalog, based on
reported state-of-the-art Android energy code smells and their
known energy costs per usage time, to be usable for an energy
debt analysis; b) We present an open-source SonarQube tool called
E-Debitum, to automatically calculate the energy debt between
various versions of an Android application; c)We present the results
of the energy debt analysis (energy smell detection and energy
debt evolution) on three popular Android applications containing
various releases (one having 17 releases).

This paper is structured as follows: Section 2 thoroughly de-
scribes the notion of energy debt, and how it should be expressed/-
calculated, and introduces our energy debt smells catalog; Section 3
presents our SonarQube tool, E-Debitum, and an experimental vali-
dation using E-Debitum on 3 popular Android apps to analyze their
energy debt; Section 4 presents related work; finally, our conclu-
sions and future work are included in Section 5.

2 INTRODUCING ENERGY DEBT CONCEPTS
This section will describe the current definition of energy debt by
presenting in Section 2.1 the general idea behind the concept. After
presenting such concepts, we clarify each one in detail. First, we
define how to express our newly introduced smells catalog, i.e., the
considered must-fix problems and their associated energy cost, and
present an instantiation of such a catalog adapted to the current
concept of energy debt (Section 2.2). Afterwards, in Section 2.3 we
explain how the energy debt can be estimated for a given software
release version, using the occurrences of smells found for a given
release. Finally, we discuss how this debt can be be transformed into
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interest with the appearing of new releases, and how to estimate
such an interest (Section 2.4).

2.1 Concept Overview
Technical debt reflects the cost arising from performing additional
work on a software system, due to developers taking “shortcuts
that fall short of best practices” [1]. In other words, this cost can
be defined as the technical effort, in working hours, required for
fixing all issues associated with bad programming practices, in a
given software release. The cost keeps increasing, as new versions
(with new issues) keep getting released, and if the initial issues are
not properly addressed, they accumulate interest [5]. Based on the
underlying concept of technical debt, Energy Debt is defined as
the amount of unnecessary energy that a software system uses over
time, due to maintaining energy code smells for sustained periods.

A visual comparison of the two concepts is depicted in Figure 1.
The left-hand side of the figure illustrates the well-known repre-
sentation of technical debt, including the concepts of refactoring
and maintenance effort, along with the definition of interest. The
right-hand side presents the definition of energy debt, where we
assume that evolving the software (i.e., introducing new features on
new releases) will eventually result in the addition of new (energy)
code smells, hence the Energy Debt (𝐸𝐷) increases per version.

The cost of maintaining energy code smells in a software release
is always directly proportional to the amount of time that the same
release operates. As an example, if two software systems 𝑆1 and 𝑆2
have the exact same energy code smells, the amount of excessive
energy consumed by 𝑆1 might be higher than 𝑆2 if it is intended to
be used longer, during the same timespan.

A

A’ B’

B

Maintenance effort

R
ep

ay
m

en
t

E
ff

o
rt A

B

A’

B’E
n

er
g
y

D
eb

t

Release Timeline

effortm(actual)

effortm(optimal) interest

ef
f
o
rt

r

in
te
re
st

E
D

re
fa

ct
or

evolve

Figure 1: Technical Debt vs. Energy Debt Terminology

Given the previous assumptions, the energy debt 𝐸𝐷 of a soft-
ware release must be expressed not as a cost value, but as a cost
function, which receives, as input, two variables: a software release
𝑟 , and a usage time 𝑡 . Equation 1 defines such a function, and it
allows us to obtain, for a given release 𝑟 , its energy debt 𝐸𝐷 after a
given usage time of 𝑡 :

𝑒𝑑 (𝑟, 𝑡) = 𝑐𝑜𝑠𝑡 (𝑟 ) ∗ 𝑡 (1)

The 𝑐𝑜𝑠𝑡 (𝑟 ) function included in the equation represents the
energy cost of release 𝑟 , per unit of time. In other words, it relates
to the existing number of energy code smells in that version, and
the energy cost (per unit of time) of each one. The definition of that
function is expressed as Equation 2:

𝑐𝑜𝑠𝑡 (𝑟 ) =
𝑁∑
𝑖=1

𝑤𝑖 (𝑟 ) × 𝐸 (𝑖) (2)

Here, 𝑁 is the number of smells included in the considered smell
catalog, while 𝑤𝑖 (𝑟 ) returns a weight value for smell 𝑖 , which is
affected by the number of 𝑖 smells found in release 𝑟 and the context
in which they were found. 𝐸 (𝑖) returns the expected energy debt
per time unit of smell 𝑖 , as defined in the smell catalog.

The presented formula assume that each considered energy smell
has an associated energy debt value, expressed in function of time
units (for instance, per minute). Nevertheless, when studying the
energy consumption impact of code smells, researchers often tend
to present the potential gains/savings as an interval (i.e., highest
and lowest observed energy saving). This is due to the fact that mea-
suring energy is not a completely deterministic task, for example,
the CPU/room temperature greatly affects energy consumption.

Following the highest/lowest saving approach adds valuable
information regarding potential energy savings. A certain smell can
have a maximum savings of, for instance, 3000 mJ per minute, and
a minimum of 150 mJ per minute. When compared to another smell
with respective maximum and minimum savings of 900 mJ and 300
mJ per minute, we know that in a best-case scenario refactoring the
first one would result in higher gains, but in a worst-case scenario
the second smell presents better savings. Hence, a developer can
use this information to decide how to properly focus their attention
when refactoring code smells, depending on the project goals [8].

In accordance with the previous assumption, energy debt should
consider, for each code smell, two energy values: the highest (𝐸𝑚𝑎𝑥 )
and lowest (𝐸𝑚𝑖𝑛) observed energy savings. Since energy debt must
be expressed in a function of usage time, it is expected that 𝐸𝑚𝑎𝑥

will be much higher with increase of usage time, as seen in Figure 2.
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Figure 2: Energy Debt Thresholds Increase Over Time

There are two represented versions of a release in this figure:
the optimal version, with all smells removed (𝐴′), and the energy
smelly version (𝐴). The optimal version already has a constantly
increasing energy consumption, as it would be expected. Energy
debt can be summed up as the area between the line for 𝐴′, and the
(red) line for 𝐴, which becomes much larger when considering the
maximum values. This will introduce changes to Equation 1, which
will consider two cost values, in the form of two functions:

𝑒𝑑 (𝑟, 𝑡) =
(
𝑐𝑜𝑠𝑡𝑚𝑖𝑛 (𝑟 ) × 𝑡 ; 𝑐𝑜𝑠𝑡𝑚𝑎𝑥 (𝑟 ) × 𝑡

)
(3)

The energy debt will therefore always be presented in the form
of an interval. Consequently, each of the cost functions will need
to refer to the proper energy debt per time unit. In other words, the
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𝐸 (𝑖) function in Equation 2 will be 𝐸𝑚𝑖𝑛 (𝑖) for the lowest savings,
and 𝐸𝑚𝑎𝑥 (𝑖) for the highest savings.

2.2 The Smells Catalogue
In order to report the technical debt of a software system/release,
it is necessary to consider a set of issues and their severity in terms
of refactoring time. Hence, for the energy debt approach, the first
step is to define those issues, and the highest/lowest energy gain
which can be obtained from refactoring/removing each one.

The energy code smells contained in our catalogue have all
been reported in green software literature and are widely used and
studied specifically within the Android ecosystem, where energy
consumption is a main software concern. We excluded smells which
did not provide a way to infer a highest/lowest energy saving value
per minute, either because it was not reported by the authors or
because raw result data was not publicly available. For each energy
smell, we indicate where its energy impact was studied, a brief de-
scription on why it has a negative influence on energy consumption,
and the corresponding reported maximum and minimum energy
savings in milliJoules per minute (𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛 , respectively).

DA - Draw Allocation.

• 𝐸𝑚𝑎𝑥 : 158𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 36𝑚𝐽 per minute

This is the first of five smells whose energy impact analysis
was included in [8, 12, 13]. The authors aimed at understanding
how fixing code patterns detected by Android lint1 can improve
energy efficiency. Lint’s issues are divided into categories, such as
Performance or Security. Draw Allocation, as well as the next 4
smells, is a Performance issue.

Draw Allocation occurs when new objects are allocated along
with draw operations, which are very sensitive to performance. In
other words, it is a bad practice to create objects inside the onDraw
method of a class which extends a View Android component, as we
see in the following snippet:
public class CloudMoonView extends View {

@Override
protected void onDraw(Canvas canvas) {

RectF rectF1 = new RectF (); ✘
...
if(! clockwise) {

rectF1.set(X2-r, Y2-r, X2+r, Y2+r);
...

} }

The recommended alternative for this smell is to move the allo-
cation of independent objects outside the method, turning it into a
static variable.

WL - Wakelock.

• 𝐸𝑚𝑎𝑥 : 194𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 10𝑚𝐽 per minute

Wakelock is the second Android lint performance issue [8, 12, 13,
34, 50]. Essentially, lint detects whenever a wake lock, a mechanism
to control the power state of the device and prevent the screen from
turning off, is not released, or is used when it is not necessary.

The following snippet shows an example of a wake lock being
acquired, but not released when the activity pauses.
1Lint is a code analysis tool, provided by the Android SDK, which reports
upon finding issues related with the code structural quality. Website: devel-
oper.android.com/studio/write/lint

public class DMFSetTempo extends Fragment {
PowerManager.WakeLock wakeLock;

public void onClickBtStart(View view) {
wakelock.acquire (); ✔

}

@Override ()
public void onPause () { super.onPause (); ✘ }
}

}

The alternative here would be to simply add a release instruc-
tion when the lock is no longer needed or is not in use.

RC - Recycle.

• 𝐸𝑚𝑎𝑥 : 533𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 15𝑚𝐽 per minute

Recycle is another Android lint performance issue [8, 12, 13].
It detects when collections or database related objects, such as
TypedArrays or Cursors, are not recycled nor closed after being
used. When this happens, other objects of the same type cannot
efficiently use the same resources.

The following snippet shows a Cursor instance being used with-
out being recycled:
public Summoner getSummoner(int id) {

SQLiteDatabase db = this.getReadableDatabase ();

Cursor cursor = db.query(TABLE_FAV , new String [] { ... };
...
return summoner; ✘

}

The alternative in this case would be to include a close method
call before the method’s return.

VH - View Holder.

• 𝐸𝑚𝑎𝑥 : 2105𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 892𝑚𝐽 per minute

View Holder is the last Android lint performance issue [8, 12,
13], whose alternative intends to make a smoother scroll in List
Views. The process of drawing all items in a List View is costly,
since they need to be drawn separately. However, it is possible to
make this more efficient by reusing data from already drawn items,
which reduces the number of calls to findViewById(), known to
be energy greedy [29].

In order to better describe this smell, we introduce this snippet:
public View getView(int pos , View cView , ViewGroup par) {

LayoutInflater inflater = (LayoutInflater) context
.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

cView = inflater.inflate(R.layout.apps , par , false);
TextView txt=( TextView) cView.findViewById(R.id.label); ❶
ImageView img=( ImageView) cView.findViewById(R.id.logo);❷
return row;

}

Every time getView() is called, the system searches on all the
view components for both the TextView with the id “label” (❶)
and the ImageView with the id “logo” (❷), using the energy greedy
method findViewById(). The alternative version is to cache the de-
sired view components in a static class and ensuring the findViewById
method of each View object is executed once. Subsequent calls to
getView() will use cached values for the view components.

HMU - HashMap Usage.

• 𝐸𝑚𝑎𝑥 : 229𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 28𝑚𝐽 per minute
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This smell is related to the usage of the HashMap collection [4, 8,
32, 34, 45]. In fact, as stated in the Android documentation page, the
usage of HashMap is discouraged, since the alternative ArrayMap
is allegedly more energy-efficient, without decreasing the perfor-
mance of map operations2.

The alternative is to simply replace the type HashMap, whenever
it is used, with ArrayMap.

EMC - Excessive Method Calls.

• 𝐸𝑚𝑎𝑥 : 9529𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 557𝑚𝐽 per minute

Unnecessarily calling a method can penalize performance, since
a call usually involves pushing arguments to the call stack, storing
the return value in the appropriate processor’s register, and clean-
ing the stack afterwards. This penalty was explored by [4, 8, 24],
showing that the energy consumption in Android applications can
be decreased by removing method calls inside loops that can be
extracted from them. An example of an extractable method call
would be one which receives no arguments, and is accessed by an
object that is not altered in any way inside the loop.

The alternative is to replace the call with a variable declared
outside the loop and initialised with the return value of that call.

MIM - Member Ignoring Method.

• 𝐸𝑚𝑎𝑥 : 7844𝑚𝐽 per minute
• 𝐸𝑚𝑖𝑛 : 88𝑚𝐽 per minute

This smell addresses the issue of having a non-static method
inside a class which could be static instead [4, 8, 34], i.e., it does not
access any class fields, directly invoke non-staticmethods, and is not
an overriding method. Static methods are stored in a memory block
separate from where objects are stored, and no matter how many
class instances are created throughout the program’s execution,
only one instance of such method will be created and used. This
mechanism helps in reducing energy consumption.

2.3 Counting Expenses & Estimating Debt
With a defined energy smell catalog, the next step is to define a
strategy to analyze the occurrence of such smells in a given release.
The starting point for this task will be to use a common source code
analysis tool capable of detecting code smells. There are several
ways to achieve this. For instance, SonarQube3, which is a widely
used tool for technical debt estimation, provides an API for defining
detection rules for issues/smells of different languages.4

Detecting the occurrence of a smell, however, is necessary but
not the sole requirement to properly analyze its impact on energy
debt. A smell can be detected, for instance, inside a block of dead or
unreachable code, or it can be placed inside a procedure which may
only be executed once in a software lifecycle (e.g. an initial setup).
On the other hand, a code smell can also be part of a mechanism
designed to be re-utilized several times, such as a loop, thread, or
Service (very common in Android). These kind of scenarios should
be considered when estimating energy debt, and since the energy

2ArrayMap documentation: http://bit.ly/32hK0y9.
3SonarQube webpage: http://www.sonarqube.org.
4Adding Coding Rules webpage: https://docs.sonarqube.org/latest/extend/adding-
coding-rules/

debt approach implies the usage of statistical analysis mechanisms,
we can follow already defined strategies for static energy analysis.

Several strategies have been suggested for this task, all of which
have been accepted by the community with promising results. As
advised in previous work on energy debt [9], we will consider a
simplified version of the strategy from Jabbarvand et al. [21]:

𝑤 (𝑖, 𝑟 ) =
𝐶∑
𝑗=1

𝑝𝑎𝑡ℎ𝑠 ( 𝑗) × 𝐿𝐵 (4)

In this equation:
• 𝐶 is the number of 𝑖 smells found in the release 𝑟 ;
• 𝑝𝑎𝑡ℎ𝑠 ( 𝑗) represents the number of paths in the call graph
through which the 𝑗𝑡ℎ occurrence of smell 𝑖 is reachable;

• 𝐿𝐵 will be 1 if the 𝑗𝑡ℎ of the smell is outside a loop, or
a constant indicating the loop bound; it can be inferred if
possible, or pre-established.

For more details and examples on the calculation of Energy Debt
throughout versions, please refer to [9].

2.4 Paying Interests
The concept of interest in technical debt has already been formu-
lated [5], and its application has been studied [2, 3, 49]. The concept
is based on the fact that, as software evolves, the cost/effort of
adding features to a new release increases if technical debt is not
addressed. Maintaining a release with technical debt requires more
effort than maintaining one without it; the effort difference between
the two is what is called the technical debt interest.

The left-hand side of Figure 1 illustrates interest. There is a
software version,𝐴, containing code smells, and therefore technical
debt. At this point, a decision can be made on what to prioritise. If
the priority is releasing the version as it is, without dealing with the
smells then the effort of maintaining/evolving to a new release 𝐵
will be higher than if the priority was investing effort in fixing the
smells and releasing an optimal version of that release, 𝐴′, without
technical debt. This resembles the idea of accumulation of debt, and
debt needs to be re-payed.

Chatzigeorgiou et al. [5] presented a technique to predict the
technical debt breaking point, i.e., when will the accumulated in-
terest be higher than the initial effort to remove the technical debt
(i.e., from the initial release, which is called principal). With this
approach, it is possible to present developers with an alternative: if
technical debt is not addressed now, then they have approximately
until release number 𝑁 to properly deal with it; otherwise, from
then on, the additional maintenance effort from not dealing with
technical debt, will always be higher than the effort to deal with
the principal. This ultimately means that, at that point, they are
wasting development time.

When considering energy instead of technical debt, the concept
of interest needs a different approach to be defined. For starters, it
will not tell developers (or project managers) how much additional
maintenance effort is being applied. This is due to the fact that
energy debt does not measure effort, but the drain of a particular
resource. In that sense, the energy debt interest is the amount of
excessively consumed energy over time, that could be avoided if the
issues which caused it were properly addressed earlier. In simple

http://bit.ly/32hK0y9
http://www.sonarqube.org
https://docs.sonarqube.org/latest/extend/adding-coding-rules/
https://docs.sonarqube.org/latest/extend/adding-coding-rules/
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Figure 3: Accumulation of Interest

terms, it is the accumulated energy debt after 𝑛 software releases.
This concept complements energy debt in the sense that it can be
used to estimate the "real-world" cost of not fixing the smells, which
can be monetary or uptime related.

Figure 3 illustrates the perception of interest within energy debt.
Three software releases are included here, and the presented values
refer to the minimum estimated debt. For this example, we assume
that issues from previous versions are not addressed in any way,
hence, energy debt is always increasing. For the initial release, 𝑣1,
we consider no interest was accumulated thus far, due to the fact
that energy debt is estimated in function of the usage time, which
would be null at the exact instant when the version was released.

Starting from 𝑣2, we can compute interest. One possible way
to tackle this is to compute the average of all energy debts from
previous releases. In this particular case, the minimum accumulated
interest would be 32. Likewise, when considering release 𝑣3, the
minimum acumulated interest would be (32+37)

2 = 34.5.
The presented approach might seem over-simplified, but it is a

fair portrayal of debt repayment. Interest is directly proportional to
energy debt, which ultimately means that when interest is reduced,
the initial debt is being re-payed. It is important to interpret interest
similarly to energy debt: an interval describing the minimum/max-
imum energy being excessively consumed per usage time. As
such, we argue that, with each new release, the expected usage
time should be higher than any previous release. Therefore it is
guaranteed that, even though energy debt can be reduced between
releases, accumulated interest will be inflated for later releases.

3 E-DEBITUM: ENERGY DEBT ANALYSIS
Although energy smells at large may occur in any programming
language, a number of language specific smells exist. With this in
mind, this proof of concept was written in Java.

To achieve our goals, the E-Debitum tool5 was implemented
through two separate SonarQube plugins, through the aid of tem-
plates which will be used to handle the necessary logic involved in
integrating the built tool into the platform. The first plugin imple-
ments a set of rules corresponding to the aforementioned energy
smells. As such, it is dubbed as the rules plugin. It is used during
the analysis process to detect and document any and all energy
smells present in the code, alongside any other issues actively being
searched for by the platform.

The second plugin, dubbed the metrics plugin, is active immedi-
ately after the code scan is complete and is responsible for measur-
ing the minimum/maximum estimated values of Energy Debt in the
program. It tallies up the number of instances of each given code
5Github: https://github.com/e-debitum/E-Debitum-tool

smell and, using the estimated joule per minute expenditure they
cause, stores the total debt value in its best/worst case scenarios.

These functionalities were kept separated into two as to better
improve the readability of the plugin’s code, as well as to allow
SonarLint users to make use of the rules as they write code, as
opposed to exclusively discovering the energy smells upon analysis.
It is worth noting that in this case, however, they would only see
the rules but not fully know their impact as a whole.

3.1 Rules Plugin
To create the first SonarQube plugin, an official Java specific rules
template6 was used to save development time. As such, five files
will be created for each smell detecting rule implemented.

For starters, a test file will be written. This will contain code
to be used to test the rule. It holds a set of methods in which
instances of both compliant and non-compliant code is written
to show SonarQube what patterns to search for when testing for
that given smell and which to eke out. Afterwards, a rule class will
be developed, which handles the logic when SonarQube detects a
possible instance of non-compliant code. It will check to confirm
that it is not a false positive and, if it does, report the issue. Finally,
a test class will be created, which simply houses the unit test for the
rule. This will verify that instances where the test file and rule class
flag code as non-compliant match up when building the plugin.

Additionally, an HTML and JSON file will be made so as to
display the details of the rule to the end user within SonarQube.
These include a short description of the rule, along with an example
case of non-compliant code and its respective fix, as well as the
rule’s related techical debt and tags.

Once implemented, each rule must be activated within the plugin
by adding it to the RulesList class baked into the plugin template.

3.2 Metrics plugin
For this plugin, another template was used, making use of the Sonar
API7. To do this, three Java classes need to be developed. The first
of these implements Sonar API’s Plugin interface. This class is the
entry point for all extensions made to SonarQube. In this case, two
extensions will be added, which are the other two necessary classes.

The first extension is an implementation of the MeasureCom-
puter interface. This class is responsible for describing its output
to the system and reading which and how many energy smells
were detected and sum up the associated maximum and minimum
estimated debt. Lastly, the final class necessary and the second
extension added is an implementation of the Metrics interface. This
class simply defines the metadata for minimum and maximum
energy debt as variables in SonarQube.

3.3 Experimental Validation
To test the efficacy of the implemented plugins, a set of Android
applications were acquired through searching GitHub’s library of
open-source projects. From these, a handful of highly downloaded
Android apps were selected with (i) a fluctuating number of smells

6SonarQube Java rules template plugin: https://github.com/SonarSource/sonar-custom-
rules-examples/tree/master/java-custom-rules
7SonarQube custom plugin example plugin: https://github.com/SonarSource/sonar-
custom-plugin-example

https://github.com/e-debitum/E-Debitum-tool
https://github.com/SonarSource/sonar-custom-rules-examples/tree/master/java-custom-rules
https://github.com/SonarSource/sonar-custom-rules-examples/tree/master/java-custom-rules
https://github.com/SonarSource/sonar-custom-plugin-example
https://github.com/SonarSource/sonar-custom-plugin-example
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per release and (ii) a significant number of release across its lifespan.
As such, three applications which met this criteria were chosen.

PDF Viewer Plus8 is an open source PDF viewer which allows the
reading and sharing of PDF files, with the ability to customise the
UI with a variety of themes, which had 17 separate releases. Table 1
presents the results of the tool analysis.

Despite the high number of releases of the app, the number of
smells detected remained relatively low, with only one to two smells
being detected across nearly its entire lifespan. Likewise, its energy
debt remained stable all throughout, keeping a low range between
its best and worst case scenarios at an maximum average of 4.09
J/min and a minimum average of 1.18 J/min. Using SonarQube’s
Activity tab, we can see the plot of the apps code smells - in this
case, exclusively energy smells - along with their maximum and
minimum energy debt, as seen in Figure 4.

Figure 4: Minimum and Maximum Energy Debt for PDF
Viewer Plus releases over time

Malse Geluiden9 is another open source app available in the
Google PlayStore. Through it, users can play a set of sounds and
animations on their device, as well as share them throughWhatsApp.
This app was tested across 7 explicit releases, which were run
through SonarQube. Table 2 presents the four energy smells and
its occurrences found throughout the analysis of this app.

This app finds an increasing number of energy smells with each
release and a rising overall level of debt, as well as a wider difference
between its maximum and minimum values, achieving an average
of 45.76 J/min and 6.66 J/min, respectively, as seen in Figure 5.

Lastly, EscapeApp10 is a client application used for a virtual reality
escape game, which contains three different smells occurrences
spread over five releases, as seen in Table 3.

The smell detection performed on EscapeApp displays a wide
gap of around 100 J/min between its best and worst case, with a
maximum and minimum averages of 139.20 J/min and 8,64 J/min,
respectively, as seen in Figure 6.

4 RELATEDWORK
Technical debt is refers to the pitfalls of creating sub-optimal soft-
ware to fit a shorter interval, introduced by Cunningham [15]. This
8PDF Viewer Plus code: https://github.com/JavaCafe01/PdfViewer
9Malse Geluiden code: https://github.com/MegaNetjes/MalseGeluiden
10EscapeApp code: https://github.com/alanvanrossum/kroketapp

Figure 5: Minimum and Maximum Energy Debt for
MalseGeluiden releases over time

Figure 6: Minimum and Maximum Energy Debt for Es-
capeApp releases over time

is a common practice employed to meet short term development
deadlines, with the intent of completing it at a later time. As soft-
ware evolves, it is liable to take on debt from several sources: “tech-
nological obsolescence, change of environment, rapid commercial
success, advent of new and better technologies, and so on — in
other words, the invisible aspects of natural software ageing and
evolution.” [23]. However, more common issues can also plague
software development, born from poor coding practices or general
ignorance, accentuating different aspects to technical debt [48].

As already known, allowing technical debt to continuously build
up without a level of debt management raises the risk of producing
unmanageable and inefficient code, which can hamper the addi-
tion of new or updating existing functionalities. This makes it so
the longer such code goes unattended, the more resources will be
needed to correct it and with diminishing returns [5].

One such inefficiency in software is of high energy consumption.
In fact, the profiling, analysing and improving the energy efficiency
of software has become a very active research field. Studies have
shown that developers are aware of the energy consumption prob-
lem, and often times seek help in solving such issues [30, 42, 43].
Currently, there is a broad range of work done on understanding
what aspects in programming languages can contribute to high

https://github.com/JavaCafe01/PdfViewer
https://github.com/MegaNetjes/MalseGeluiden
https://github.com/alanvanrossum/kroketapp
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versions
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6

smell
count

MIM:1 MIM:0 L MIM:0 MIM:0 MIM:0 MIM:0 MIM:0 MIM:0 MIM:0 MIM:0 MIM:0 MIM:0 MIM:0 MIM:0 MIM:0 MIM:0 MIM:0
VH:1 VH:1 VH:1 VH:1 VH:1 VH:2 K VH:2 VH:2 VH:2 VH:2 VH:2 VH:2 VH:1 L VH:1 VH:1

Table 1: Detected smells on Pdf Viewer Plus releases

versions
1.0 1.1 1.2 1.2.2 1.2.3 1.2.4 1.2.5

smell
count

MIM:1 MIM:2 K MIM:2 MIM:2 MIM:2 MIM:2 MIM:2
VH:6 VH:6 VH:6 VH:6 VH:6 VH:6 VH:6

EMC:4 EMC:1 L EMC:1 EMC:1 EMC:1 EMC:1
RC:6 RC:6 RC:6 RC:6 RC:6

Table 2: Detected smells onMalseGeluiden releases

versions
v0.4 v0.5 v0.6 v0.7 v0.8

smell
count

EMC: 1 EMC: 2 K EMC: 1 L EMC: 1 EMC: 1
HMU: 8 HMU: 8 HMU: 8
MIM: 2 MIM: 3 K MIM: 3

Table 3: Detected smells on EscapeApp releases

energy costs such as different data structures [17, 28, 38, 41], lan-
guages [10, 39], memoization [44], design patterns [46], code refac-
toring [47, 51], and even the testing phase [26].

Specific to the Android ecosystem, there has been research in
topics such as the classification of Android apps as being more/less
energy efficient [21], identifying energy green APIs [29], estimating
energy consumption in code fragments [11, 19], etc. In fact, research
in the reduction of energy consumption in the Android system is
most likely the most explored environment in this research field
over the past decade [4, 12–14, 22, 24, 32, 34, 45, 50]. The results of
most of these studies are able to quickly translate into our energy
smell catalogue to be used in the calculation of energy debt.

Additionally, much research has been conducted in providing
several approaches to the measurement of energy consumption. For
example for Android energy analysis there is: eCalc [16], vLens [25],
eProf [35], Trepn[18, 19, 21], GreenOracle [7], GreenScaler [6], COB-
WEB [20]. There is also work in automatic tools to help detect
energy greedy code spots [36, 37], automatically refactoring for
the most energy efficient data structure [31, 40], or automatically
refactoring energy greedy Android patterns [4, 8, 13].

The aforementioned works on the different approaches to reduc-
ing energy consumption of software systems do not yet translate
their potential gains across a period of time into the actual energy
savings (or costs) a developer or business can have on his/her soft-
ware by applying such transformations. It is our belief that, with
this work, we have helped close this gap in not only knowing if an
alternative solution is more energy efficient, but by how much can
we save (in energy consumption or even monetary savings) over
time if and when we adopt the energy efficient alternative.

5 CONCLUSIONS AND FUTUREWORK
This paper presented the concept of energy debt as the additional
energy cost over time of a software system due to the occurrences of
energy code smells in its source code. We have presented a catalog
of reported state-of-the-art energy code smells, their known energy
costs per usage time, and have expressed energy debt as a function
considering (i) the number of smells, (ii) the context in which they
were detected, and (iii) the expected usage time of the application.
Energy debt interest is also expressed as the accumulation of energy
debt per release, which could be avoided by eliminating energy
smells in previous releases.

The automatic detection of the presented energy code smells,
and the computation of energy debt and interest, has been achieved
using our E-Debitum tool. This tool is usable within the Sonar-
Qube framework through two plugins. Using E-Debitum, we were
able to perform an experimental validation on 3 popular Android
applications across various releases.

We are currently working on extending the smell catalog, which
we consider, to be updated with more energy code smells. Addi-
tionally, we are preparing a large scale study on the energy debt of
hundreds of open-source Android applications.
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