Bringing Green Software to Computer Science Curriculum:

Perspectives from Researchers and Educators

Joao Saraiva
HASLab/INESC Tec
Universidade do Minho, Portugal
saraiva@di.uminho.pt

ABSTRACT

Only recently has the software engineering community started
conducting research on developing energy efficient software, or
green software. This is shadowed when compared to the research
already produced in the computer hardware community. While
research in green software is rapidly increasing, several recent
studies with software engineers show that they still miss techniques,
knowledge, and tools to develop greener software. Indeed, all such
studies suggest that green software should be part of a modern
Computer Science Curriculum.

In this paper, we present survey results from both researchers’
and educators’ perspective on green software education. These
surveys confirm the lack of courses and educational material for
teaching green software in current higher education. Addition-
ally, we highlight three key pedagogical challenges in bringing
green software to computer science curriculum and discussed ex-
isting solutions to address these key challenges. We firmly believe
that “green thinking” and the broad adoption of green software in
computer science curriculum can greatly benefit our environment,
society, and students in an era where software is everywhere and
evolves in an unprecedented speed.

CCS CONCEPTS

« Hardware — Power estimation and optimization; « Social and
professional topics — Software engineering education; Computer
engineering education.

KEYWORDS

Green Software, Green Computing, Green Education

ACM Reference Format:

Jodo Saraiva, Ziliang Zong, and Rui Pereira. 2021. Bringing Green Software
to Computer Science Curriculum:: Perspectives from Researchers and Edu-
cators. In 26th ACM Conference on Innovation and Technology in Computer
Science Education V. 1 (ITiCSE 2021), June 26-July 1, 2021, Virtual Event, Ger-
many. ACM, New York, NY, USA, 7 pages. https://
doi.org/10.1145/3430665.3456386

(cc) @

This work is licensed under a Creative Commons Attribution International 4.0 License.

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany.
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8214-4/21/06.
https://doi.org/10.1145/3430665.3456386

Ziliang Zong
Department of Computer Science,
Texas State University, USA
ziliang@txstate.edu

Rui Pereira
HASLab/INESC Tec
Portugal
rui.a.pereira@inesctec.pt

1 INTRODUCTION

The world is increasingly aware of and concerned about sustainabil-
ity and the green movement. Computers and their software play
a pivotal role in our world, thus it has a special responsibility for
social development and the welfare of our planet. In this century,
the situation is becoming critical since software is everywhere! The
widespread use of computer devices, from regular desktop comput-
ers, to laptops, to powerful mobile phones, to consumer electronics,
and to large data centers is changing the way software engineers
develop software. Indeed, in the forthcoming era of Al, Internet of
Things (IoT) and edge computing, there are new concerns which
developers have to consider when constructing software systems.
While in the previous century both computer manufacturers and
software developers were mainly focused in producing very fast
computer systems, now energy consumption is becoming the main
bottleneck when developing such systems [37].

Despite the considerable progress in hardware energy efficiency,
only recently have the programming language and software engi-
neering communities started conducting research on developing
energy efficient software, or green software. Although still in its
early stage, green software research is quickly attracting more
attention, as evidenced by the organization of specific research
events (i.e. the ICT4S and IGSC conferences, and the GREENS,
RE4SuSy, and MeGSuS workshops), and latest research publications
in green data structures [19, 35, 36], green software libraries [24],
green rankings of programming languages [34], green program-
ming practices/patterns [10, 11, 23, 27, 30], green software metrics
and development [6, 17], green repositories [40], energy optimiza-
tion for database [25], green web [16], green cloud [15, 18, 39],
green Al [7, 22, 41], and infrastructure supporting green computing
research and education [44].

While research in green software is rapidly increasing, several
recent studies with software engineers show that they still miss
techniques and tools to develop greener software [28, 31, 37, 38]. For
example, researchers surveyed programming related sub-Reddits
to ask software developers on what they know regarding green
software [31], and presented the following conclusion:

“The survey revealed that programmers had limited knowledge of
energy efficiency, lacked knowledge of best practices to reduce software
energy consumption, and were unsure how software consumes energy.
These results highlight the need for training on energy consumption.”

Very similar concerns were also shown by [38] where they re-
ported that the number of questions posted on StackOverflow re-
lated to software energy consumption increased rapidly, but most
of them were not answered or poorly answered. Academia is also
concerned about the under-representation of sustainability and
green computing in the curricula on higher education. For example,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://creativecommons.org/licenses/by/4.0/

[42] reported the findings from a targeted survey of 33 academics
on the presence of green and sustainable software engineering in
higher education. The major findings indicated that sustainability is
under-represented in the curricula and the main reasons are: 1) lack
of awareness, 2) lack of teaching material, 3) high effort required,
and 4) lack of technology and tool support.

In fact, all those recent studies show that academia should not
only advance state-of-the-art research in green software design,
but also educate software engineers towards greener software de-
velopment. Obviously, this education is best provided from the very
beginning of a software engineer career. Unfortunately, today’s un-
dergraduate computer science (CS) education often fails to address
our social and environmental responsibility [8]. It is our firm belief
that “green thinking” and the broad adoption of green software in
computer science curriculum can greatly benefit our planet and
students in this rapidly evolving era of Al, super-computing, cloud
computing, IoT, and edge computing.

In this paper, we conduct a study with 21 well-known researchers
and educators in the green software/computing field. We present
the survey results on their perspectives regarding green software ed-
ucation. These surveys confirm the lack of courses and educational
material for teaching green software in current higher education.
Moreover, we highlight three key pedagogical challenges in bring-
ing green software to computer science curriculum and discussed
existing solutions to address these key challenges.

2 PERSPECTIVES FROM RESEARCHERS AND
EDUCATORS

To better understand the perspectives of researchers and educators,
we invited all GREENS! program committee members (72 members
in the past 6 years) to participate in a survey specifically designed
for green software education. GREENS is a well-established ICSE
(software engineering flagship conference) co-located workshop
focusing on research on green software. Our survey aimed to un-
derstand three main points of view (POV):

e POV1: Those who are currently teaching green software
topics thus believe they should be taught;

e POV2: Those who are not currently teaching green software
topics but believe they should be taught;

e POV3: Those who are not current teaching green software
topic but believe they should not be taught.

Figure 1 shows the conceptual flow of the survey, which contains
6 distinct phases represented as either a rectangle or a circle. The
corner of each phase represents how many questions (shown as
#Q) being asked in that phase. Two of the phases have only one
question, which separate the survey into the 3 aforementioned
POVs. POV1 path presents a total of 12 questions, POV2 presents 9
questions, and POV3 presents 4 questions.

2.1 The Survey

We received 21 anonymous responses (29.2% of the PC members).
The detailed results are presented in this section where Q indicates
survey questions and R indicates survey results.

IMost recent GREENS workshop: http://greens.cs.vu.nl/

——1
Yes (2) areyou | No(29)
ﬁ teaching? —}
— ¥V g% i
Currentcu | ves (18) [gnouditbal” No @

structure

[| taught?]
g 30 2
Green'..x Suggested |
SWasa |e— 99

CU structure
course

Figure 1: Survey conceptual flow

Are you teaching? Out of the 21 responses, 90.5% (19) said they
were not currently teaching a Curricular Unit (CU) on green soft-
ware/computing and 9.5% (2) said they were.

Should it be taught? When asking the 19 participants if they
“believe software engineering students should be taught energy efficient
practices”, 94.7% (18) said Yes, while only 5.3% (1) said No.

Why not? The single participant who believed students should

not be taught energy efficient practices was asked:

(1) Q: “On a scale of (Highly Disagree) 1-5 (Highly Agree), do you
agree that students already have the necessary knowledge to
practice energy efficient software development?”

R: Their answer was a middle-grounded 3/5.

(2) Q:“Could you briefly explain why you consider that it should

not be taught?”
R: To summarize, the participant believes that “As someone,
who is now developing in industry, I do not see it realistic to
add even more requirements to developers that are already
working with very many perspectives on software.”

Suggested CU structure. The answers to the following ques-
tions are visually represented in Figure 2.

(1) Q: “On a scale of (Very Low Importance) 1-5 (Very High Im-
portance), how important is teaching energy efficiency in a
software engineering/IT degree?”

R: The majority of participants ranked the importance of
teaching energy efficiency in a SWE/IT degree as either high
(56%) or very high (28%).

(2) Q:“How should such concepts be taught?”

R: A large majority (72%) believe that these concepts should
be taught as part of already existing CUs, with 16% consider-
ing it should be a CU by itself, and the remainder 11% stating
it should be taught across multiple CUs.

(3) Q:“In which degree level should it be taught?”

R: This question allowed participants to choose more than
one degree levels. In this case, 77% believed it should be
taught at the Master’s degree level and 17% thought it should
be taught at the Ph.D. level, while 61% believed it should also
be included in the undergraduate curriculum.

Current CU structure. This phase was presented to two par-
ticipants who are already teaching a CU related to energy efficien-
cy/sustainability/green computing.

http://greens.cs.vu.nl/

How important is teaching

energy efficiency in SWE/IT? Should it be taught as:
60% 56% (10) 11.10%
= part ofa CU
16.70%
40%
28% (5) waCU by
itself
20% 17% (3)
72.20% across
. various CU
0% 0%
0%
1 2 3 4 5
Which degree level?
BSc 61.10% (11)
MSc 77.80% (14)
PhD - 16.70% (3)
0% 20% 40% 60% 80%

Figure 2: Results for Suggested CU structure

(1) Q: “Are you teaching energy efficiency practices as a standalone
CU, or within another CU?”
R: Both participants stated that they currently teach their
CU by itself.
(2) Q:“What is the name of the CU?”
R: One of the participants indicated that they teach two
distinct CUs: Sustainable SW Technology (MSc) and Envi-
ronmental and Sustainability Informatics (BSc). The second
participant’s CU is named SW Engineering and Green IT.
(3) Q:“In which degree level is it taught?”
R: Both participants answered that they teach their CU at a
MSc level, while one also teaches such topics at a BSc level.
(4) Q:“How many years have you been teaching this CU?”
R: Both participants have taught their CU over 4+ years.
(5) Q:“How many students enroll on average?”
R: The number of students on average varied between 30-40.
(6) Q:“What is your opinion on how the CU is performing?”
R: The participants mentioned very positive comments re-
garding their CUs. They state that “students are very in-
terested” and “there is great engagement of students in the
practical project, where they design and perform empirical
experiments on mobile apps”.
(7) Q:*Would you like to share with us the web-page/material of
your curricular unit?”
R: Both sent their teaching materials to us but they also
requested to not share this information publicly.

Green Software as a course? This final phase concludes our
survey for those who both already teach a CU on sustainable I'T/-
green software, or believe it should be taught. In total, this phase
contained 20 participant responses. The last 3 questions which are
presented here not only had a list of options for the participants
to choose from, but also allowed them to add any non-existing
option if they believed something was missing. The answers to the
following questions are visually represented in Figure 3.

(1) Q: “On a scale of (Highly Disagree) 1-5 (Highly Agree), do

you agree that there is enough teaching material available to

support a course on green software/computing?”

R: The majority disagrees with this comment, with 25%
highly disagreeing and 40% disagreeing. This is very much
in line with previous studies which have shown that there
is indeed a heavy lack of knowledge and tools for green
software and sustainable IT development [28, 31, 37, 38].

Do you agree that there is enough teaching material to
support a course on green software/computing?

40% (8)
40%

25% (5)

20% 15% (3)
- 10% (2) 10% (2)
o I N
1 2 3 4 5

What topics should be covered in such a CU?

Optimizing energy consumption 90% (18)

Analyzing energy consumption NI 50% (:5)
o T e B SN 203 (15)

consumption

ey e Mo S o5 (13)

development

Energy efficient data centers [N 50% (10)
Developing energy consumption
P e PO N 50% (10)

benchmarks

0% 20% 40% 60% 80% 100%

Minimum requirements needed to follow a Green
Software/Computing CU?

Programming Languages 75% (15)
Empirical Studies s— 45% (9]
Operating/Distributed Systems s—— 40% (8)
Program Benchmarking s 40% (2)
Software Analysis me—— 40% (8)
Software Testing se— 0% (3)
Language Implementation mess—— 20% (4)
Networking s 20% (4)
Requirements engineering wm
Software Architecture m
Software Quality == 5%
Basic concepts on energy consumption s
Software Security =
Human Computer Interaction 0%
Artificial Intelligence 0%
Formal Methods 0%

0% 25% 50% 75% 100%

How should the CU be organized/given?

Laboratory classes I 100% (20)
Theoretical classes IIIEEEEGEGEGEGEGNGNGNGNGG 60% (12)
Group software project IEEEGEG_GG—_—— 55% (11)
Research paper discussions I 30% (6)

Individual software project NN 15% (3)

0% 20% 40% 60% 80% 100%

Figure 3: Results for Green SW as a course

(2) Q:“What topics should be covered in such a CU?”
R: Most participants (90%) believe that topics on how to
analyze and optimize the energy consumption of software
should be covered. The classification and interpretation of
energy consumption results is also very much agreed upon

by many (80%), which in some sense depends on the anal-
ysis/optimization to already be present and taught. The re-
mainder, which are more specialized topics (i.e. mobile or
data centers), split the opinions of our participants in half.

(3) Q:“What minimum requirements do you believe are needed
for a computer science student to properly follow such a CU?”
R: The results are overwhelmingly (75%) in favor of pro-
gramming languages being the most needed minimum re-
quirement for such a CU. Afterwards, most find knowledge
on empirical studies (45%) slightly ahead of topics such as
operating/distributed systems, benchmarking, and software
analysis and testing (all 40%).

(4) Q:“How should such a CU be organized/given?”
R: The results show how all (100%) participants believe, with-
out a doubt, that such a CU should be given as laboratory
classes. A hands on approach to such topics are seen as the
best methodology for teaching. Slightly over half (60%) be-
lieve theoretical classes should be involved in someway, and
55% believe a group software project should take place.

This survey confirms that green software/sustainable IT re-
searchers/educators do share the concerns shown in recent studies
with software engineers [28, 31, 37, 38]. The large majority believe
that green software should be taught as part of already existing CUs
both at the Bachelor and the Master levels. While our participants
highly agree that such a course should be taught in more practical
hands-on classes and labs, they do agree that the teaching materials
and lab supporting tools are currently inadequate.

3 KEY PEDAGOGICAL CHALLENGES

The quickly surging demand for energy efficient computing makes
it no longer sufficient for traditional computer science curriculum
to train our students with only performance-oriented programming
skills and mindset. It is paramount to encourage students to "think
green" and write greener code. Regrettably, green software is under-
represented in current CS curricula of higher education. According
to the literature [28, 31, 37, 38, 42] and our survey results presented
in Section 2, a number of key pedagogical challenges prevent green
software from being broadly adopted by the CS curricula. In this
section, we highlight these key pedagogical challenges and present
some existing solutions and guidelines.

3.1 Organization, Objectives, and Covered
Topics of Independent Courses

To create an independent new green computing or green software
course, the first pedagogical challenge educators must face is what
should be the appropriate course objectives, organization, and cov-
ered topics? Here we present the sample curricula of two indepen-
dently taught green software/computing courses (one at the Master
level and the other at the Ph.D. level).

3.1.1 Master Level Green Software Engineering Course.

Course Organization: This course is offered as a one semester
long elective course as part of the master program on software
engineering at the University of Minho. Students are required to
have strong background on programming languages. They will
spend 3 hours per week in the classroom, which include a one hour

seminar where all theories and techniques are presented and two
hours lab where students apply the learned theories and techniques
to improve software energy efficiency.

Course Objectives:

e Be able to instrument, monitor and measure the energy con-
sumption of software systems.

e Become aware of the impact of programming practices on
energy consumption.

e Become familiar with the research problems in the field of
green software engineering.

Covered topics: The course covers both traditional software anal-
ysis topics, and software testing topics. For each topic, traditional
state-of-the-art techniques and tools are presented. Each topic is
also presented with a green flavor. For example, strategic [43] and
aspect oriented programming [21] are both presented to compute
metrics and transform/refactor source code, but also to instrument
the source code without adding the intrusive energy monitoring
code, keeping it in one aspect, later weaving to the program un-
der (energy) analysis. To monitor energy consumption, we teach
students how to use the Running Average Power Limit (RAPL)
framework (developed by Intel [12]), where they instrument the
program’s source code with calls to RAPL in the lab classes. We
also present a catalog of red smells (as described in the green soft-
ware literature) and their corresponding green refactorings. For
example, we present the greeness of Java collections as reported
in [19, 35], and students can use the jStanley tool [36] to automati-
cally refactor collections for energy efficiency. Also, the concepts
of energy debt [9], which mimics the technical debt metaphor, and
the E-Debitum plugin for SonarQube [26] are introduced, in order
to compute the energy debt of Java programs. As abnormal energy
consumption can be seen as software faults, we teach a variant
of fault localization techniques (e.g. Spectrum-based Energy Leak
Localization (SPELL) [32, 33]) to locate energy leaks in the source
code. Students can use the SPELL tool to locate such energy hot-
spots in their software. Finally, combining SPELL with our green
refactoring, we introduce automated energy-aware program repair.

Grading Distribution

F A
4.05% 5.41%
E
22.97%

Figure 4: Green Software exam question grade distribution

During the last 3 years of the course exam, partial source code
of a Java class containing 6 occurrences of different red smells were

presented to students, where they had to identify and refactor so as
to improve its energy consumption. Figure 4 shows the individual
European grades that students got throughout those years. These
results show that students, after being trained in green software
approaches, are able to directly apply them in practice. More specif-
ically, 27% of students (received A or B) can identify and refactor
at least 5 out of the 6 energy smells and the other 45% of students
(with C or D) can find and fix 3 or 4 energy smells. Students who
received lower grade (E or F) simply did not put in enough efforts
because they also fail the full exam with very few exceptions.

3.1.2 Ph.D. Level Green Computing Course.

Course Organization: This course is offered as a one semester
long elective course as part of the Ph.D. program in Computer Sci-
ence at the Texas State University. It comprises of lectures, research
paper reading and writing, as well as hands-on experiences on green
software design. The instructor uses the state-of-the-art research
papers in green computing as the textbook. Students are required
to select 14 research papers from the instructor provided list, read
one research paper, and submit the summary about that paper as
homework each week. In addition, every student needs to choose
2-5 research papers (depending on class enrollment) to present in
class and lead class discussions of their presented papers under the
guidance of the instructor. Students also need to conduct a semester
long research project (in group or individually) on a topic related to
green computing. Students are highly encouraged to propose their
own research ideas but need consent from the instructor to ensure
its suitability. Students will use instructor provided research ideas
in case they cannot come up with their own. The final deliverable
for the research project could be a research paper, a technical report,
or a software toolkit that has noticeable contribution, plus a final
presentation at the end of the semester. To allow students obtain
hands-on experiences on green software design and apply what
they have learned from class discussions and research papers, the
instructor hosts a green programming competition towards the end
of the course. The difficulty of the competition problem is at the
medium level of the ACM International Collegiate Programming
Contest (ICPC) [3]. Students can choose different programming
languages, algorithms, data structures, CPU/GPU with the goal to
minimize the energy consumption when solving the same problem
with identical input size. For fair comparison, all codes are submit-
ted to and evaluated by the Greencode cloud programming portal
[1, 2]. All students are required to present their energy optimization
techniques (to improve student engagement and peer learning) and
the instructor announces the winner after students’ presentations.

Course Objectives:

o Be able to understand the state-of-the-art research and best
practices of industry in green computing.

e Be able to identify and address new research problems in
green computing.

o Be able to understand the impact of different programming
practices on software energy efficiency.

Covered topics: This course covers a broad category of hardware
and software techniques to improve the energy-efficiency of com-
puting systems. Topics include history and road map of hardware

energy efficiency, best practices in building green data centers,
theories and practices of reducing software energy consumption,
energy-aware resource management and scheduling, hands-on ex-
periences on power-measurable systems and software optimiza-
tions for energy efficiency. In addition, two weeks of class time
are reserved to cover emerging research topics such as green Al,
power-aware 5G, and edge computing.

3.2 Integrating Green Modules to Courses

Creating an independent green computing/software course is often
too time consuming or impractical due to the lack of resources and
expertise. This leads to the second pedagogical challenge, which is
how to integrate green modules to existing courses with a much
lower cost. Introducing the concept of green thinking “early” and
"often” to CS curriculum can effectively address this challenge.
“Early” means to demonstrate the impact of programming practices
on software energy consumption at the CS1 or CS2 programming
courses level. "Often" means to keep refreshing and enhancing
students’ green thinking mindset across upper level undergraduate
core courses such as data structures, algorithms, programming
languages, software engineering, and operating systems, even to
graduate level courses such as parallel and distributed computing
and machine learning. For example, the following “Prime and Happy
Number” project is suitable for CS1 or CS2 courses.

Project Description: Write a program that calculates how many
Happy Prime numbers (numbers that are both prime and happy)
between 1 and 1 million. A happy or sad number is defined by
the following process: Starting with any positive integer, replace
the number by the sum of the squares of its digits, and repeat the
process until the number either equals 1 (happy) or loops endlessly
(sad).

Project timeline: This project is assigned in two phases. In the
first phase, students submit a program that calculates the correct
result (There are 11,144 Happy Prime numbers between 1 and 1
million) within certain amount of time (e.g. < 60s). After the first
phase, students are taught how to reduce the energy consumption
of programs (not using the Happy Prime example). In the second
phase, students are asked to optimize their code submitted in phase
1 for better energy efficiency and the winner will receive extra
credits. To ensure fair comparison, all codes need to be submitted
via GreenCode [1, 2], which can measure the energy consumption
of a submitted program. Students can choose different program-
ming languages (GreenCode supports about 20 languages), data
structures, and algorithms with the goal to minimize the energy
consumption of their Happy Prime code.

Figure 5 shows the energy consumption results of students’ first
and second submissions. Before training, students submitted pro-
grams that are highly energy inefficient. For example, 15% of stu-
dents submitted codes that consumed over 1,000] of energy and no
one submitted a solution that consumed less than 5J. After training,
23% of students submitted codes that consumed less than 5] and no
one submitted code that consumed over 1,000]. This study clearly
demonstrates the great improvement in energy efficiency that can
be achieved when students are trained and motivated in writing
greener code. More importantly, students feel that they have great
achievements and lots of fun in participating in the competition.

Before Training

<5 Joules
0%

After Training
>1000 Joules
0%

<500 Joules
11%

p
<1000 Joules i =1000
0% 15%

<5 Joules.

10-25
Joules
8%

5-10Joules | |
45%

|<500 Joules
15%

10-25Joules
25%

Figure 5: HappyPrime Energy Consumption of Students’
Submissions - Before Training and After Training

A series of such exemplary projects specifically designed for dif-
ferent teaching topics can greatly help instructors integrate green
modules early and often at various levels of CS courses. For ex-
ample, similar projects or in-class code demos can be designed to
illustrate the impact of different data structures, algorithms, pro-
gramming languages, and design patterns on energy consumption
and easily integrated to corresponding core courses such as data
structure, algorithm design and analysis, programming languages,
and software engineering. We strongly recommend integrating
green computing/software modules “early” and “often” to existing
courses in a way that enhances what is already taught and that
melds naturally in a given course.

3.3 Lab Supporting Infrastructure

It is hard to train students how to write green software if we cannot
measure the energy consumption of software. Therefore, easy-to-
use tools that can provide detailed and accurate power measurement
play a critical role in green computing and green software educa-
tion. The lacking of such tools and low cost infrastructure that can
support lab experiments in green software courses is clearly one of
the key obstacles that prevent educators from introducing green
computing/software topics to the CS curriculum.

Fortunately, as power consumption becomes increasingly impor-
tant, most vendors today provide power measurement APIs such as
Intel’s Running Average Power Limit (RAPL) [12, 14] and Nvidia’s
Management Library (NVML) [5]. These APIs provide capabilities
to measure the real-time power consumption of CPU, DRAM, and
GPU for programs running on desktop workstations or servers.
Since power data is accessed through machine specific registers
(MSRs), users may need special permission to log in an Linux OS to
obtain such data, which is not trivial for some students (especially
undergraduate students). The GreenCode cloud programming por-
tal [1, 2] provides an effective solution by allowing users to submit
code from anywhere at anytime via a web browser, evaluate their
energy efficiency, and share their energy efficient programs with
the community for free. Since 2015, GreenCode has received nearly
30,000 code submissions and served users from the United States,
Asia, Europe, Canada, and South America. It provides instructors
and students a free “virtual lab” in the cloud, which significantly

reduces the time and cost in setting up a similar power measurable
system by themselves. GreenSoft [4] is another platform that al-
lows researchers, educators, and students to publish blogs and share
their latest research, teaching and learning experiences in green
computing. It helps foster and grow the research and education
community in green computing and green software design.

A number of useful tools are also available for energy analysis of
applications running on mobile devices. For example, the Android
Qualcomm Trepn app [20] can profile hardware usage (GPS, Wifi,
etc.), resource usage (memory, CPU), and the power consumption
of both the system and any standalone Android app that run on
a Snapdragon chipset. PETRA [13] is another model-based tool
that can estimate the energy consumption of Android apps at a
coarse-grained level. Hardware-based power measurement tools
that provide high frequency and high precision profiling (e.g. Mon-
soon [29]) are also available but they are generally expensive.

To better support the integration of green modules in CS curricu-
lum, more easy-to-use power measurement tools and lab supporting
infrastructure will be essential. It is beneficial and urgent to have
a long-term plan to fund and support the development of such in-
frastructure/services and make them freely available to researchers,
educators, and students in the green computing community.

4 CONCLUSION AND ENGAGEMENT

To conclude, we firmly believe that “green thinking” and the broad
adoption of green software in computer science curriculum can
greatly benefit our planet, our society, and our students in this
rapidly evolving era of Al, super-computing, cloud computing, big
data, IoT, and edge computing. Unfortunately, today’s computer
science curriculum lacks teaching materials, creative thinking, and
innovative education in green computing and green software design.
In this paper, we present survey results from the researchers’ and
educators’ perspective on green software education, highlight the
key pedagogical issues in teaching green software, and provide
exemplary solutions to address these key challenges.

Nevertheless, bringing green software to CS core curriculum
requires a long-term community effort, which includes researchers,
industry pioneers, and educators working together, and periodi-
cally providing guidance on restructuring standard curricula across
various courses to incorporate state-of-the-art knowledge and the
best practices of green software design. We sincerely welcome all
stakeholders from industry and academia to join us in making green
software more attractive to students at various levels, and acceler-
ating the formation of a community that values software energy
efficiency and promotes green software design.

ACKNOWLEDGMENTS

This work is supported by the national funds through the Por-
tuguese Funding Agency (FCT - Fundacéo para a Ciéncia e a Tec-
nologia, within project UIDB/50014/2020) and the U.S. National
Science Foundation (NSF) under grant no. CNS-1305359. We also
thank the reviewers for their valuable comments and acknowl-
edge the support of the Erasmus+ Key Action 2 project No. 2020-
1-PT01-KA203-078646: “SusTrainable - Promoting Sustainability
as a Fundamental Driver in Software Development Training and
Education".

REFERENCES

(2]

—
—

[12

[13]

[14]

[15

[16

[17]

(18

[20]

[21]

[22]

[23

2018. GreenCode. https://greencode.cs.txstate.edu/.

2018. How to use GreenCode. https://greensoft.cs.txstate.edu/index.php/2018/
05/27/how-to-use-the-greencode-website/.

2020. The ACM International Collegiate Programming Contest . https://icpc.
global/.

2021. GreenSoft: A Community Supporting Research and Education in Energy
Efficient Software Design. https://greensoft.cs.txstate.edu.

2021. NVIDIA Management Library. https://developer.nvidia.com/nvidia-
management-library-nvml.

Sarah Abdulsalam, Ziliang Zong, Qijun Gu, and Meikang Qiu. 2015. Using the
Greenup, Powerup, and Speedup metrics to evaluate software energy efficiency. In
Proceedings of the 6th International Green and Sustainable Computing Conference.
IEEE, 1-8.

Cody Blakeney, , Xiaomin Li, Yan Yan, and Ziliang Zong. 2021. Parallel Blockwise
Knowledge Distillation for Deep Neural Network Compression. IEEE Transactions
on Parallel and Distributed Systems 32 (2021), 1765-1776.

Yu Cai. 2010. Integrating Sustainability into Undergraduate Computing Education.
In Proceedings of the 41st ACM Technical Symposium on Computer Science Educa-
tion (Milwaukee, Wisconsin, USA) (SIGCSE °10). Association for Computing Ma-
chinery, New York, NY, USA, 524-528. https://doi.org/10.1145/1734263.1734439
Marco Couto, Daniel Maia, Jodo Saraiva, and Rui Pereira. 2020. On Energy
Debt: Managing Consumption on Evolving Software. In Proceedings of the 3rd
International Conference on Technical Debt (Seoul, Republic of Korea) (TechDebt
°20). Association for Computing Machinery, New York, NY, USA, 62-66. https:
//doi.org/10.1145/3387906.3388628

Marco Couto, Jodo Saraiva, and Jodo Paulo Fernandes. 2020. Energy Refactor-
ings for Android in the Large and in the Wild. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 217-228.
Luis Cruz and Rui Abreu. 2017. Performance-based Guidelines for Energy Efficient
Mobile Applications. In Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems (Buenos Aires, Argentina) (MOBILESoft ’17).
IEEE Press, Piscataway, NJ, USA, 46-57. https://doi.org/10.1109/MOBILESoft.
2017.19

Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Chris-
tian Le. 2010. RAPL: memory power estimation and capping. In International
Symposium on Low-Power Electronics and Design (ISLPED), 2010 ACM/IEEE. IEEE,
189-194.

Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy Zaid-
man, and Andrea De Lucia. 2017. Software-based energy profiling of android
apps: Simple, efficient and reliable?. In 2017 IEEE 24th international conference on
software analysis, evolution and reengineering (SANER). IEEE, 103-114.

Martin Dimitrov, Carl Strickland, Seung-Woo Kim, Karthik Kumar, and Kshitij
Doshi. 2015. Intel® Power Governor. https://software.intel.com/en-us/articles/
intel-power-governor. Accessed: 2017-10-12.

Bradford Everman, Narmadha Rajendrana, Xiaomin Li, and Ziliang Zong. 2021.
Improving the Cost Efficiency of Large-scale Cloud Systems Running Hybrid
Workloads - A Case Study of Alibaba Cluster Traces. Journal of Sustainable
Computing (2021).

Bradford Everman and Ziliang Zong. 2018. GreenWeb:Hosting High-Load Web-
sites Using Low-Power Servers. In 2018 International Green and Sustainable Com-
puting Conference (IGSC’18).

Blake Ford and Ziliang Zong. 2021. PortAuthority: Integrating Energy Efficiency
Analysis into Cross-Platform Development Cycles via Dynamic Program Analysis.
Journal of Sustainable Computing (2021).

Keke Gai, Meikang Qiu, Hui Zhao, Lixin Tao, and Ziliang Zong. 2016. Dynamic
energy-aware cloudlet-based mobile cloud computing model for green computing.
Journal of Network and Computer Applications 59 (2016), 46—54.

Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh, Bram Adams,
and Abram Hindle. 2016. Energy profiles of java collections classes. In Proceedings
of the 38th International Conference on Software Engineering. ACM, 225-236.
Mohammad Ashraful Hoque, Matti Siekkinen, Kashif Nizam Khan, Yu Xiao, and
Sasu Tarkoma. 2015. Modeling, Profiling, and Debugging the Energy Consump-
tion of Mobile Devices. ACM Comput. Surv. 48, 3, Article 39 (Dec. 2015), 40 pages.
https://doi.org/10.1145/2840723

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented programming. In
ECOOP’97 — Object-Oriented Programming, Mehmet Aksit and Satoshi Matsuoka
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 220-242.

Da Li, Xinbo Chen, Becchi Michela, and Ziliang Zong. 2016. Evaluating the Energy
Efficiency of Deep Convolutional Neural Networks on CPUs and GPUs. In 2016
IEEE International Conference on Sustainable Computing and Communications.
Ding Li and William G. J. Halfond. 2014. An Investigation into Energy-saving
Programming Practices for Android Smartphone App Development. In Pro-
ceedings of the 3rd International Workshop on Green and Sustainable Software
(Hyderabad, India) (GREENS 2014). ACM, New York, NY, USA, 46-53. https:
//doi.org/10.1145/2593743.2593750

[24]

[25

[26

~
=

(28]

[29

[31

(32

[33

[34

(35]

[36

®
=

[38

[39

[40

[41]

[42

[43]

[44

Mario Linares-Vasquez, Gabriele Bavota, Carlos Bernal-Cardenas, Rocco Oliveto,
Massimiliano Di Penta, and Denys Poshyvanyk. 2014. Mining energy-greedy
API usage patterns in Android apps: an empirical study. In Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2-11.

Divya Mahajan, Cody Blakeney, and Ziliang Zong. 2019. Improving the Energy
Efficiency of Relational and NoSQL Databases via Query Optimizations. Journal
of Sustainable Computing 22 (2019), 120-133.

D. Maia, M. Couto, J. Saraiva, and R. Pereira. 2020. E-Debitum: Managing Software
Energy Debt. In 2020 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering Workshops (ASEW). 170~177. https://doi.org/10.1145/3417113.
3422999

Sepideh Maleki, Cuijiao Fu, Arun Banotra, and Ziliang Zong. 2017. Understand-
ing the Impact of Object Oriented Programming and Design Patterns on Energy
Efficiency. In 2017 International Workshop on Sustainability in Multi-Many-Core
Systems in conjunction with International Green and Sustainable Computing Con-
ference. IEEE.

Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin
Sadowski, Lori Pollock, and James Clause. 2016. An Empirical Study of Prac-
titioners’ Perspectives on Green Software Engineering. In Proceedings of the
38th International Conference on Software Engineering (Austin, Texas) (ICSE
’16). Association for Computing Machinery, New York, NY, USA, 237-248.
https://doi.org/10.1145/2884781.2884810

Monsoon. 2018. Monsoon Solutions, Inc. http://www.msoon.com/LabEquipment/
PowerMonitor/.

R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol. 2018. EARMO:
An Energy-Aware Refactoring Approach for Mobile Apps. IEEE Transactions on
Software Engineering 44, 12 (2018), 1176-1206.

C. Pang, A. Hindle, B. Adams, and A. E. Hassan. 2016. What Do Programmers
Know about Software Energy Consumption? IEEE Software 33, 3 (2016), 83-89.
Rui Pereira, Tiago Cargéo, Marco Couto, Jacome Cunha, Jodo Paulo Fernandes,
and Jodo Saraiva. 2020. SPELLing out energy leaks: Aiding developers locate
energy inefficient code. Journal Systems and Software 161 (2020). https://doi.org/
10.1016/j.js5.2019.110463

Rui Pereira, Tiago Car¢do, Marco Couto, Jacome Cunha, Jodo Paulo Fernandes,
and Jodo Saraiva. 2017. Helping Programmers Improve the Energy Efficiency
of Source Code. In Proceedings of the 39th International Conference on Software
Engineering Companion (Buenos Aires, Argentina) (ICSE-C ’17). IEEE Press, Pis-
cataway, NJ, USA, 238-240. https://doi.org/10.1109/ICSE-C.2017.80

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jicome Cunha, Joa Paulo
Fernandes, and Joa Saraiva. 2017. Energy Efficiency Across Programming Lan-
guages: How Do Energy, Time, and Memory Relate?. In Proceedings of the
10th ACM SIGPLAN International Conference on Software Language Engineer-
ing (Vancouver, BC, Canada) (SLE 2017). ACM, New York, NY, USA, 256-267.
https://doi.org/10.1145/3136014.3136031

Rui Pereira, Marco Couto, Joa Saraiva, Jacome Cunha, and Joa Paulo Fernan-
des. 2016. The Influence of the Java Collection Framework on Overall Energy
Consumption. In Proceedings of the 5th International Workshop on Green and
Sustainable Software (GREENS ’16). ACM, 15-21.

Rui Pereira, Pedro Simao, Jaicome Cunha, and Jodo Saraiva. 2018. jStanley: Plac-
ing a Green Thumb on Java Collections. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (Montpellier, France)
(ASE 2018). ACM, New York, NY, USA, 856-859. https://doi.org/10.1145/3238147.
3240473

Gustavo Pinto and Fernando Castor. 2017. Energy efficiency: a new concern for
application software developers. Commun. ACM 60, 12 (2017), 68-75.

Gustavo Pinto, Fernando Castor, and Yu David Liu. 2014. Mining questions about
software energy consumption. In Proceedings of the 11th Working Conference on
Mining Software Repositories. ACM, 22-31.

Meikang Qiu, Zhong Ming, Jiayin Li, Keke Gai, and Ziliang Zong. 2015. Phase-
Change Memory Optimization for Green Cloud with Genetic Algorithm. IEEE
Trans. Comput. 64 (2015), 3528 — 3540.

Rui Rua, Marco Couto, and Jodo Saraiva. 2019. GreenSource: A Large-Scale
Collection of Android Code, Tests and Energy Metrics. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). 176-180.

Roy Schwartz, Jesse Dodge, Noah Smith, and Oren Etzioni. 2019. Green AL
https://arxiv.org/abs/1907.10597.

Damiano Torre, Giuseppe Procaccianti, Davide Fucci, Sonja Lutovac, and
Giuseppe Scanniello. 2017. On the Presence of Green and Sustainable Software
Engineering in Higher Education Curricula. In Proceedings of the 1st Interna-
tional Workshop on Software Engineering Curricula for Millennials (Buenos Aires,
Argentina) (SECM ’17). IEEE Press, 54-60. https://doi.org/10.1109/SECM.2017.4
Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. 1998. Building
Program Optimizers with Rewriting Strategies. SIGPLAN Not. 34, 1 (Sept. 1998),
13-26.

Ziliang Zong, Rong Ge, and Qijun Gu. 2017. Marcher: A Heterogeneous System
Supporting Energy-Aware High Performance Computing and Big Data Analytics.
Journal of Big Data Research 8 (2017), 27-38.

https://greencode.cs.txstate.edu/
https://greensoft.cs.txstate.edu/index.php/2018/05/27/how-to-use-the-greencode-website/
https://greensoft.cs.txstate.edu/index.php/2018/05/27/how-to-use-the-greencode-website/
https://icpc.global/
https://icpc.global/
https://greensoft.cs.txstate.edu
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://doi.org/10.1145/1734263.1734439
https://doi.org/10.1145/3387906.3388628
https://doi.org/10.1145/3387906.3388628
https://doi.org/10.1109/MOBILESoft.2017.19
https://doi.org/10.1109/MOBILESoft.2017.19
https://software.intel.com/en-us/articles/intel-power-governor
https://software.intel.com/en-us/articles/intel-power-governor
https://doi.org/10.1145/2840723
https://doi.org/10.1145/2593743.2593750
https://doi.org/10.1145/2593743.2593750
https://doi.org/10.1145/3417113.3422999
https://doi.org/10.1145/3417113.3422999
https://doi.org/10.1145/2884781.2884810
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
https://doi.org/10.1016/j.jss.2019.110463
https://doi.org/10.1016/j.jss.2019.110463
https://doi.org/10.1109/ICSE-C.2017.80
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3238147.3240473
https://doi.org/10.1145/3238147.3240473
https://doi.org/10.1109/SECM.2017.4

	Abstract
	1 Introduction
	2 Perspectives from Researchers and Educators
	2.1 The Survey

	3 Key Pedagogical Challenges
	3.1 Organization, Objectives, and Covered Topics of Independent Courses
	3.2 Integrating Green Modules to Courses
	3.3 Lab Supporting Infrastructure

	4 Conclusion and Engagement
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 46.78, 78.78 Width 256.84 Height 88.79 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 46.7841 78.7804 256.8354 88.7944

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 0
 1

 1

 HistoryList_V1
 qi2base

