
Refactoring Smelly Spreadsheet Models

Pedro Martins and Rui Pereira

HASLab / INESC TEC & Universidade do Minho, Portugal
{prmartins,ruipereira}@di.uminho.pt

Abstract. Identifying bad design patterns in software is a successful
and inspiring research trend. While these patterns do not necessarily
correspond to software errors, the fact is that they raise potential prob-
lematic issues, often referred to as code smells, and that can for example
compromise maintainability or evolution.
The identification of code smells in spreadsheets, which can be viewed as
software development environments for non-professional programmers,
has already been the subject of confluent researches by different groups.
While these research groups have focused on detecting smells on concrete
spreadsheets, or spreadsheet instances, in this paper we propose a com-
prehensive set of smells for abstract representations of spreadsheets, or
spreadsheet models. We also propose a set of refactorings suggesting how
spreadsheet models can become simpler to understand, manipulate and
evolve. Finally we present the integration of both smells and refactorings
under the MDSheet framework.

Keywords: Spreadsheets, Smells, Model-Driven Engineering, ClassSheets

1 Introduction

For many people, a spreadsheet system is the programming language and pro-
gramming environment of choice. A spreadsheet programmer is often referred
to as an end user and is a secretary, an accountant, a teacher, a student, an
engineer, or any other person that is not a professional programmer and simply
wants to solve a problem [31]. Although spreadsheets were introduced to help
end users to perform simple mathematical operations, they quickly evolved into
powerful software systems heavily used in industry by professional programmers
to process complex and large data. For example, spreadsheets are often used in
industry as a simple mechanism to adapt data produced by one system to the
format required by a different one.

Regardless of their huge commercial success and wide acceptance, spread-
sheets are also known for being highly error-prone! This is supported by both
research studies [33,36,37,32] and errors reported in the media1.

These facts suggest that spreadsheets are a particularly significant target for
the application of software engineering principles. Surprisingly, only recently the

1 A list of spreadsheets horror stories is maintained by the European Spreadsheet Risks
Interest Group at http://www.eusprig.org/horror-stories.htm.

research community started investigating the use of software engineering tech-
niques in spreadsheets [24]. In software engineering, models were widely adopted
as a suitable abstraction mechanism to specify/express complex software. Nat-
urally, spreadsheets followed this trend, namely in the use of model-driven soft-
ware development techniques [23,19,5,3,21], software refactoring and evolution
techniques [20,10,22,14,6], and software metrics and quality models [7,16,8,15].

In this paper we present techniques to detect and eliminate spreadsheet smells
in the context of model-driven spreadsheet development. A model-driven spread-
sheet smell is not an error, but an indication of a poorly designed spreadsheet
model. As a consequence spreadsheet smells can be used to improve a spread-
sheet model’s maintainability and quality. After presenting ClassSheets and a
motivational example in Section 2 we present our contributions:

– We adapt a catalog of spreadsheet smells to work on model-driven spread-
sheet. That is to say that for each smell defined at the spreadsheet data level
we define an equivalent at the ClassSheet level. (Section 3);

– For each smell on ClassSheet models that we propose, we present a possible
refactoring or set of refactorings to eliminate it (Section 4). The refactorings
are expressed as model evolutions. Thus eliminating smells at the model level
automatically eliminates smells at the data level;

– We automated smell detection with an implementation under the MDSheet
framework (Section 5.1);

– We also implemented automated refactorings under MDSheet (Section 5.2);

We conclude this paper exposing related work in Section 6 and drawing some
conclusions in Section 7.

2 ClassSheets– Models for Spreadsheets

Before presenting spreadsheet model smell detection, let us introduce as a run-
ning example model-driven spraedsheet. Figure 1 presents a spreadsheet used to
grade students’ scores. This spreadsheet contains information on various Marks,

Fig. 1. Instance of a grading spreadsheet.

Exams, and Students. Each Exam has 3 parts, each having its own weight value.

Every Student has a mark from each exam, calculated by a formula using the
weights of each part, and the value the student obtained in the respective part.
A student’s final mark is the average mark across all exams.

This spreadsheet business logic can be abstracted and represented by a model.
In this paper we consider ClassSheet model [23,12]: a high-level object-oriented
abstract representation for spreadsheets. They can be compared to UML class
diagrams [18], but for spreadsheets and with layout specification. Indeed they
are formed by classes and attributes, which we will explain in the following
paragraphs using the marks spreadsheet example. Figure 2 is the ClassSheet
model to abstract and specify this grading spreadsheet. There are 3 classes,

Fig. 2. ClassSheet model of a grading spreadsheet.

Marks, Student, and Exam. Each Student, represented by row 5, has an
attribute termed name, which is set in cell A6. Each attribute in a ClassSheet
is defined by a string (e.g., name), the equal sign, and by a default value or a
formula. Note that students expand vertically, that is, each student is added after
the previous one in the next row. This is encoded in the model by the ellipsis
shown in row 6. Each Exam has an attribute with the weight for each of the 3
parts, weight1, weight2, and weight3 respectively, and expands horizontally. This
is indicated by the ellipsis in column F. The relationship between a Student and
an Exam gives us 4 attributes. The first 3, part1, part2, and part3, state the
mark the student obtained in the specific part. The last attribute, mark, states
the mark the student obtained on the exam. This mark formula is defined as:

mark=(weight1*part1 + weight2*part2 + part3*weight3) /

↪→ SUM(weight1 ,weight2 ,weight3) * max /

↪→ SUM(weight1 ,weight2 ,weight3)

The Marks class has 2 attributes. The first, mark (in cell G5, only partially),
states the final mark a student obtained throughout the exams. The second,
value (in cell H5, hidden by the mark formula), states the mark value given
(A,B,C,D, or F). These two formulas are defined respectively as:

mark=SUM(Exam.mark*max/Exam.max)) / COUNT(Exam.mark)

grade=IF(mark <=(max /5),"F", IF(mark <=(max /5*2),"D",

↪→ IF(mark <=(max /5*3),"C", IF(mark <=(max /5*4) ,"B","A"))))

Note that these formulas only differ from regular spreadsheet formulas by
the use of attributes instead of cell references. This can be compared to the use
of cell names in standard spreadsheet systems. Also note that some references
can be directed to particular attributes as follows Exam.max.

3 Spreadsheet Model Smells

The concept of code smell [25] (or simply bad smell) was introduced as a con-
crete evidence that a piece of software may have a problem. Usually a smell is
not an error in the program, but a characteristic that may cause problems under-
standing the software (for example, a long class in an object-oriented program)
and updating and evolving the software. Although they were initially designed
for objected-oriented programming, code smells have been adapted for other
contexts, including spreadsheets [8,7,28,27]. In this section we survey the code
smells defined for spreadsheet formulas introduced in [28]. Moreover, we adapt
each of these five smells to the spreadsheet models described in [10,11,13,18,12].

3.1 Multiple Operations

The first smell we present is the multiple operations smell. This smell can be
considered as present in a spreadsheet if a formula is created using too many op-
erations. Clearly it is important to understand what “too many” exactly means
in this scenario, and we will explain it in detail in Section 5.1. Note that this
smell can be detected in individual cells.

Let us look at a formula extracted from our running example (from Figure 2),
in this case the formula to evaluate the mark of a student for a specific exam:

mark=(part1*weight1 + part2*weight2 + part3*weight3) /

↪→ SUM(weight1 ,weight2 ,weight3) * max /

↪→ SUM(weight1 ,weight2 ,weight3)

As shown in this formula, ClassSheet formulas are quite similar to the ones
written in regular spreadsheet systems. Indeed the operations (operators and
formula names) are used in a similar way. Thus, we consider the model smell as
it is considered in regular spreadsheets.

In this case we have 9 operations, and as we will see these are indeed too
many to have in a formula and still be considered maintainable. Indeed having so
many operations in the same cell has several disadvantages: for once, it becomes
hard to understand what such a formula does; it also becomes difficult to update
or change such a formula.

3.2 Multiple References

Let us consider the same formula shown in the previous smell. This formula has
a second quality problem: it uses too many references. When defining ClassSheet
models, instead of using regular spreadsheet references such as A1 or B2, the user
writes the name of the attributes used formulas. In this case, part1 or weight1
are references to the attributes with the same name. This can be compared to
the use of cell names in standard spreadsheet systems. Thus, in this case the
smell adapts very well from plain spreadsheets to the ClassSheet models. In the
mark formula shown before there are 12 references to other attributes which
makes this formula hard to understand and maintain. Finally note that, as with
the previous smell, this can be detected for each cell defined by a formula.

3.3 Condition Complexity

The third smell we consider is well known and applicable whenever conditional
construction is possible in programming [29]. Thus this is also true for spread-
sheets, and for spreadsheet models.

Let us consider the formula to present the final mark of the student:

value=IF(mark <=20,"F",IF(mark <=40,"D", IF(mark <=60,"C",

↪→ IF(mark <=80,"B","A"))))

This formula is defined using 4 if conditions, which again makes it hard
to manipulate. Indeed this is true in many other programming languages, but
is especially true in spreadsheets as it must be defined in one line without any
possible indentation as possible in most regular programming languages.

Since conditional programming is possible in these models, this smell also
applies to their formulas. Once again, this smell can potentially occur in each
and every cell of the model.

3.4 Long Calculation Chain

This smell appears in spreadsheets that require long paths of cell dereferencing
to calculate the values of their formulas. For instance, if a formula has a reference
to cell A1, and A1 has a reference to A2, and A2 has a reference to A3, then there
is a long path that is necessary to run to compute the value of A1. This has a
considerable impact on the formula’s quality since it is necessary to go through
several cells to see its arguments and understand it. Also, its result may change
if one of its references changes its value, which may be difficult to notice it the
path is too long or even comprises of different worksheets.

Let us again look at the formula example of the previous smell. Such a for-
mula depends on the attribute mark, which depends on the attribute part1.
Thus this smell also applies nicely to ClassSheet models. Indeed, instead of nor-
mal spreadsheet references we have references to attributes. This also makes it
difficult to understand and evolve such formulas.

Finally note that in this case it is not possible to discover this smell only
by looking at a cell. It is necessary to follow its references to other attributes
recursively.

3.5 Duplicated Formulas

The last smell we adapt for ClassSheet models is duplicated formulas. This has
similar problems to duplicated code in a regular programming language. In the
case of spreadsheets, this occurs in a formula if part of its code is repeated.

Once again considering the mark formula, one can see that part of its def-
inition, SUM(weight1,weight2,weight3), appears twice. Thus, this smell also
applies to spreadsheet models.

Note that this smell can also occur when considering a range of cells. If part
of a formula is repeated through a set of cells, then this repeated part of the
formula is also considered duplication. Thus, this smell can occur in individual
cells, but also in groups of cells.

3.6 MDSheet with Smell Detection

The smell detection presented in this paper was implemented within MDSheet.
In MDSheet’s toolbar, a new button is available to evaluate the smells on a
model. After clicking the button, the model is annotated with comments that
describe the smells present in the annotated cells.

In Figure 3, three cells with smelly attributes were annotated with comments,
namely mark (in cell E5), mark (in cell G5), and grade (in cell H5).

Fig. 3. Smell detection in MDSheet.

4 Refactorings for Spreadsheet Models

In the previous section, we presented a catalog of smells for ClassSheets. The
detection of such smells has been implemented in a model-driven spreadsheet
environment. Before we present such environment, let us present techniques to
automatically eliminate the smells. To this end we rely on program refactorings
that change a particular piece of code, removing the smell, and not changing the
semantics of the code. In this section we present a set of refactorings that can
be used to eliminate the smells identified in the previous section. The following
refactorings were defined by Hermans et al. [28] in order to remove the smells that
they adapted to spreadsheets. We will explain each one and make the necessary
adaptation to make them useful for ClassSheets.

4.1 Extract Subformula

This refactoring is intended to extract subformulas from exiting ones. Looking at
the arguments at the root of a formula, we can extract new formulas from each
argument at the root. This will create new formulas which will be referenced by
the original formula.

Although this refactoring has been originally proposed for regular spread-
sheet formulas, it can also be applied to models. In the case of models however
this process requires the creation of a new attribute for each subformula ex-
tracted. These attributes will be created in the same class the subsformulas was
extracted from.

4.2 Extract Common Subformula

This is an additional supporting refactoring which can be applied if a formula
contains the same subformula multiple times. This refactoring follows the same
procedure as Extract Subformula.

Once again, this refactoring can be applied to ClassSheets. For example,
looking at the mark formula one can see SUM(weight1,weight2,weight3) re-
peated twice. Thus such subformula can be extracted, and a new attribute can
be created using it: total weight=SUM(weight1,weight2,weight3). It in now
possible to simply reference total weight twice in the formula.

4.3 Merge Branches

When we have a complex IF condition, we can sometimes combine multiple
branches into one if multiple branches result in the same value. This is a refactor-
ing that is quite transversal to many programming languages, and in particular it
is applicable to ClassSheets. For example, the following conditional construction
IF(mark>=3,"PASSED",IF(part3>=5,"PASSED","FAILED")) can be rewritten
as IF(OR(mark>=3,part3>=5),"PASSED","FAILED").

4.4 Merge Formulas

One of the introduced smell is the long calculation chain. This refactoring tries to
eliminate it. It can be applied when we detect that there are certain calculation
steps in a chain that do not occur in other chains. When this is detected, those
two calculation steps are merged into one formula without affecting the other
computations as the merged calculation is not being used anywhere else.

As we explained, the long calculation chain is adaptable to the context of
spreadsheet models. Moreover, this is also true for this refactoring. In the case
of models this can be applied if an attribute is defined by a formula and it is only
used in one place. In such cases, such attribute can be removed and the formula
integrated into the other computation. In our model both mark formulas could
be integrated in the formulas that use them. Note this would probably create
more smells, and thus should not be applied in this particular situation.

4.5 Other Refactorings

In [28] two more refactorings are presented, namely Group References and Move
References.

Group References can be applied when a spreadsheet cell references a series
of adjacent cells, for example SUM(A1;A2;A3;A4;A5). In this case one can re-
structure this into a lower number of ranges such as SUM(A1:A5). This smell
however cannot be applied to ClassSheet as no such range feature is present.

Move References is a refactoring which realocates the cells in a spreadsheet.
If a formula is referencing multiple cells in different parts of the spreadsheet, for
example SUM(A1:A5;B5;B19;C4;C7) one could move the values in B5, B19, C4,
and C7 to A6 to A9. This allows to rewrite the formula as SUM(A1:A9). Again,
given that no ranges are possible in ClassSheets this refactorings does not apply.

4.6 Relationship Between Smells and Refactorings

As shown in Table 1, several of the refactorings just presented can be applied to
remove different ClassSheet smells. For instance, the extraction of subformula
can be used to remove all smells except the long calculation chain. The way these
refactorings are applied to remove the smells is detailed in Section 5.

Table 1. ClassSheet smells and refactorings that can be applied to reduce them.

Multiple
Operations

Multiple
References

Condition
Complexity

Long
Calculation
Chain

Duplicated
Formulas

Extract Subformula X X X X
Extract Common Sub. X X
Merge Branches X
Merge Formulas X

5 Model-Driven Spreadsheet Framework

In the previous sections we have introduced the concept of smell and refactoring
adapted to spreadsheet models, that is, to ClassSheets. In section 5.1 we will
present how such smells can be detected under the MDSheet framework [13,11].
Moreover, in section 5.2 we will explain how the refactorings presented before
can be incorporated under the same framework.

We choose this framework because it already integrates several model-driven
spreadsheet features, including evolution [10], or data querying [34,9,4,17]. More-
over, given its modular design it allows for easy integration of new functionality,
as the one we propose in this paper.

5.1 Detection of Smells in Spreadsheet Models

In this section we present in detail the detection of smells in ClassSheet models.
As previously introduced, some of the smells depend on software metrics of
certain artifacts that appear in formulas, e.g. the number of operations or the
number of references. Following the approach presented in [28], each smell is
classified as having low, moderate, or high risk, depending on these metrics.
Obviously, the best case scenario is when no smell is present meaning there is
no risk. This is the first step our implementation must handle. Thus next we
present a Haskell [35] data type that represents these four options:

data Risk = None | Low | Moderate | High

In order to find a smell, and the associated risk, we defined a set of functions
that operate on spreadsheet models. Their signatures are presented next:

smellMultipleOperations :: Model → [(Cell ,Risk)]
smellMultipleReferences :: Model → [(Cell ,Risk)]

smellConditionComplexity :: Model → [(Cell ,Risk)]
smellLongCalculationChain :: Model → [(Cell ,Risk)]
smellDuplicatedFormulas :: Model → [(Cell ,Risk)]

These functions receive the model under consideration as an argument and
return the list of cells of the models that contain attributes, and the respective
risk.

The risk of a smell is obtained by evaluating the related metric on the model
and then mapping it to the corresponding risk as set by the thresholds.

smellMultipleOperations = map (id × risk 4 5 9) ◦metricMultipleOperations

smellMultipleReferences = map (id × risk 3 4 6) ◦metricMultipleReferences

smellConditionComplexity = map (id × risk 2 3 4) ◦metricConditionComplexity

smellLongCalculationChain = map (id × risk 4 5 7) ◦metricLongCalculationChain

smellDuplicatedFormulas = map (id × risk 6 9 13) ◦metricDuplicatedFormulas

To help with the conversion of the value of the metric with its associated risk,
an auxiliary function risk was created and, given the threshold values, converts
the value of a metric to its corresponding risk. Note that we use the thresholds
proposed and validated for regular spreadsheet formulas [28], since the formulas
in ClassSheet models are defined in a similar way.

risk :: Int → Int → Int → Int → Risk
risk low moderate high n | n < low = None

| n <moderate = Low
| n < high = Moderate
| otherwise = High

Each of the smell functions use a metric function. These functions receive a
model and evaluate the metric for each cell containing an attribute, returning
the list of cells and the number of times the corresponding problem occurs in
it. This can be represented with Model → [(Cell , Int)] as the type of the metric
functions. For each result pair of cell and number of times the problem occurs,
we apply the product of function id and risk . The function id will maintain
the cell intact, and the risk will transform the number of the occurrence of the
problem (for instance, number of operations) into the correct risk.

In the following sub-sections, we explain in more detail how we implement
each of the metrics introduced before.

Multiple Operations Metric. To evaluate this metric, we iterate over all the
items in the formula of each attribute and count all those representing operations,
namely functions (ExpFun) and operators (ExpUnoOp and ExpBinOp):

metricMultipleOperations = countIf isOperation ◦modelAttributes
where isOperation (ExpFun) = True

isOperation (ExpUnoOp) = True
isOperation (ExpBinOp) = True
isOperation = False

Note that we show here a simplified version of this function as the implemen-
tation requires certain details not useful to understand our work.

Multiple References Metric. To evaluate the multiple references metric, we
count the number of references present in the formula:

metricMultipleReferences = countIf isReference ◦modelAttributes
where isReference (ExpRef) = True

isReference = False

Condition Complexity Metric. To evaluate the condition complexity metric,
we count the number of IF s in the formula. Its implementation is very similar
to the previous metrics and thus we do not show it here. Note that an IF is a
function and counts as an operation for the multiple operations metric.

Long Calculation Chain Metric. To evaluate thi metric, a dependency tree
is generated for each attribute and then its height is calculated:

metricLongCalculationChain m = map (π24chainLength) attrs
where chainLength = treeHeight ◦ evalDeps []

attrs = map (((getCellClassName (classes m) ◦ π1)4cellName ◦ π2)4π2)
(modelAttributes ′ m)

evalDeps l attr = Node attr deps
where deps = map (λr → evalDeps ((π1 attr) : l) (r , getAtt r))) refs

refs = filter (λr → ¬ (r ∈ l)) (references (π2 attr))

references c = [(cn, an) | ExpRef cn an ← universeBi c]

getAtt = fromJust ◦ (‘lookup‘attrs)

Duplicated Formulas. To evaluate the duplicated formula metric, a list with
the formula parts of each attribute is generated and compared to the lists of the
other attributes. The number of attributes with a sub-formula match is returned.

metricDuplicatedFormulas m = map (π14countDuplicates) attrs
where countDuplicates = length ◦ filter id ◦ findDuplicates

findDuplicates attr = [isDup attr attr ′ | attr ′ ← attrs, attr ′ 6= attr]
isDup attr attr ′ = or (map (λx → x ∈ (π2 attr ′)) (drop 1 (π2 attr)))

attrs = map (id4cellSubForm) (modelAttributes m)

cellSubForm (CellFormula (Formula e)) =
[e ′ | e ′ ← universeBi e,¬ (isTerm e ′)]

where isTerm (ExpVal) = True
isTerm (ExpRef) = True
isTerm = False

The Haskell code used to specify the metrics makes use of generic programming
using Uniplate [30], which allows for a concise way to traverse of data structures.

We have shown how the detection of ClassSheet smells presented in Sec-
tion 3 are concisely implemented in Haskell. We use the Haskell programming

language because is the implementation language of the model-driven spread-
sheet framework MDSheet, where we will define the smell refactoring/elimination
as ClassSheet evolution.

5.2 Refactoring of ClassSheet Formulas

The refactorings presented in Section 4 can involve the creation or removal of
formulas from the cells, but all of them change the cell contents. The MDSheet
environment does not take into account evolution of cell formula specifically. It
focuses more one the layout of the spreadsheet and the correct referencing of cells
using named attributes to provide a more user-friendly interface to end users.
Nevertheless, our environment supports setting cell values, and changes to the
layout and cell contents are needed in order to perform these refactorings.

The refactoring of formulas in MDSheet lies on top of its bidirectional trans-
formation engine [6]. This engine is specified as a set of operations that can be
performed on the spreadsheet models, another set that can be performed on
the spreadsheet data, and a relationship between these two sets. The relation
between operations on these two artifacts, model and data, describes the equiv-
alent set of operations that is needed to be applied on the other artifact after
the original artifact is evolved with the set of operations defined on it.

Model Evolution. In order to evolve spreadsheet models, a set of operations
were defined on them, as expressed by the following data type:

data OpM : Model → Model =
addColumnM Where Index -- add a new column
| delColumnM Index -- delete a column
| addRowM Where Index -- add a new row
| delRowM Index -- delete a row
| setLabelM (Index , Index) Label -- set a label
| setFormulaM (Index , Index) Formula -- set a formula
| replicateM ClassName Direction Int Int -- replicate a class
| addClassM ClassName (Index , Index) (Index , Index)

-- add a static class
| addClassExpM ClassName Direction (Index , Index) (Index , Index)

-- add an expandable class

This set of operations are the ones to be applied any time that a refactoring
needs to be applied to evolve formulas with smells. Using these operations, we get
the automatic coevolution of the instance using the bidirectional environment of
MDSheet, that is, user will get the spreadsheet data automatically evolved after
removing the smells from the model.

Data Evolution. The refactoring of model formulas presented in this paper
not only affects spreadsheet models, but they are also applied to their instances
with the following operations used by the bidirectional transformation engine:

data OpD : Data → Data =
addColumnD Where Index -- add a column
| delColumnD Index -- delete a column
| addRowD Where Index -- add a row
| delRowD Index -- delete a row
| AddColumnD Where Index -- add a column to all instances
| DelColumnD Index -- delete a column from all instances
| AddRowD Where Index -- add a row to all instances
| DelRowD Index -- delete a row from all instances
| replicateD ClassName Direction Int Int -- replicate a class
| addInstanceD ClassName Direction Model -- add a class instance
| setLabelD (Index , Index) Label -- set a label
| setV alueD (Index , Index) Value -- set a cell value
| SetLabelD (Index , Index) Label -- set a label in all instances
| SetV alueD (Index , Index) Value -- set a cell value in all instances

With this we guarantee that the improvements made to the model are also
passed on to the their respective instances.

Model and Data Coevolution. One guarantee provided my MDSheet is the
always conformance of the instances to their models. This is achieved by relating
model operations to data ones, and vice versa. Whenever a model operation is
performed, this operation is converted to a set of data ones that perform the
necessary evolution steps in the instance so that the conformity to the model
is restored. The inverse is also available, that is, changes to the instances also
automatically coevolve the model so both the instance and the model are always
synchronized.

Refactoring by Evolution. There are multiple evolution steps that can be
performed to refactor the formula of an attribute. For all refactorings, one of the
operations to perform is to refactor the formula which is done as defined before.

For the extract subformula refactoring, a new attribute is needed to store the
extracted subformula. This implies the use of a setFormulaM to create the new
attribute and another setFormulaM to update the old formula, after extracting
the subformula. However, this can be impossible to realize if there is no place
where to add the new attribute. Thus, a addColumnM or a addRowM may be
necessary to allocate space for the new attribute.

For the extract common subformula refactoring, the evolution steps are the
same as for the extract subformula refactoring. The difference is that multiple
subformulas can be extracted with this refactoring.

For the merge branches refactoring, only a setFormulaM is needed, updating
the old formula with its refactored version.

For the merge formulas refactoring, a setFormulaM has to be applied to set
the formula with the other merged formulas. Moreover, for each of the merged
formulas, a setLabelM or setFormulaM can be applied to remove the formulas
that were merged. If any row or column became empty, functions delRowM or
delColumnM can be performed to remove them.

5.3 MDSheet with Smell Elimination

After detecting the spreadsheet smells, the system will then provide a set of
refactorings which can be applied to eliminate each smell. The user may choose
to apply such refactoring(s) to the model so it no longer contains smells. If we
look back at the smells detected in Figure 3, we can apply our refactorings and
end up with the table shown on the right in Figure 4.

Fig. 4. Smell elimination in MDSheet.

Note that the data will be automatically coevolved so that it always maintains
the instance’s conformity to the model. This smell elimination on the model also
eliminates smells in the data.

6 Related Work

There are several works that have focused on techniques based on smells detec-
tion to help improve the overall quality of spreadsheets.

One example of such work is presented in [28]. Here, the authors point a
set of smells on formulas, define different threshold for these smells based on
how frequent they appear on typical spreadsheets and suggest refactorings that
improve the spreadsheet readability and maintainability. This is the work we
adapt in this paper. A similar approach is taken by the same authors in [27],
but this time they introduce smells that can point dangerous relations between
worksheets in the same spreadsheet.

In [2], the authors created a extension (RefBook) for Microsoft Excel that
detects and refactors a set of smells that find parts of the spreadsheet that
contain, for example, unnecessary complexity and duplicated expressions. In
this work, three empirical studies are performed to evaluate the capacity of this
tool in improving the quality of spreadsheets and improving their readability,
and the authors conclude that users prefer the improved quality of refactored
sheets. There has also been tools built with the specific purpose of pointing and
quantifying cells in a spreadsheet that can lead to potential problems. In [8], the
authors use a smells-based technique, together with strategies that detect chains
of inter-dependent cells and create new worksheets with color-based warnings.

In [26] the authors developed an extension for Excel, called BumbleBee, that
is capable of detecting repetition of formulas in different zones of a spreadsheet
and transforms them through a set of strategies. The authors conclude that more

than 70% of spreadsheets have a potential for the application of these transfor-
mations and that users are more capable of performing changes to spreadsheets
using BumbleBee.

Another interesting work is presented in [7], where the authors suggest a new
catalog of smells that can be used to further improve existing techniques such
as the ones described in this section. Smells in Models is not an area as widely
researched as smells in typical software programs. Of relevant reference however
is [1]. Here, the authors propose a model-based quality assurance process that
uses techniques that perform model quality analysis and model smells detection.
Similarly to our approach, they also implement a tool that analysis and refactors
models based on the Eclipse Modeling Framework.

7 Conclusion

The detection of code smells is a widely recognized software engineering tech-
nique that contributes to assessing the overall quality of a code repository. In-
deed, identifying such bad design practices has now already been successfully
explored in different contexts other than just source code, and namely in the
context of spreadsheet engineering.

In the context of spreadsheets, however, smells have only been tackled at the
level of concrete spreadsheets. This leaves out reasoning in the same way about
spreadsheet abstract models.

This paper closes precisely this gap: we propose a catalog of smells for spread-
sheet models, exploiting and adapting the catalog that has been proposed for
spreadsheet instances. Finally, we follow the standard approach of associating
refactorings with smells, in such a way that if these refactorings are adopted the
identified smells disappear.

Acknowledgments. We would like to thank Jorge Mendes, Jácome Cunha, and
João Saraiva for the help incorporating the ClassSheet smells in the MDSheet
framework.

This work is part funded by ERDF - European Regional Development Fund through

the COMPETE Programme (operational programme for competitiveness) and by Na-

tional Funds through the FCT - Fundação para a Ciência e a Tecnologia within projects

FCOMP-01-0124-FEDER-022701and Network Sensing for Critical Systems Monitoring

(NORTE-01-0124-FEDER-000058), ref. BIM-2013 BestCase RL3.2 UMINHO. The au-

thors were funded by FCT grants BIM-2013_BestCase_RL3.2_UMINHO, BI3-2013PTDC/

EIA-CCO/116796/2010, respectively.

References

1. Arendt, T., Taentzer, G.: Integration of smells and refactorings within the eclipse
modeling framework. In: Proceedings of the Fifth Workshop on Refactoring Tools.
pp. 8–15. WRT ’12, ACM, New York, NY, USA (2012)

2. Badame, S., Dig, D.: Refactoring meets spreadsheet formulas. In: Proceedings of
the 2012 IEEE International Conference on Software Maintenance (ICSM). pp.
399–409. ICSM ’12, IEEE Computer Society, Washington, DC, USA (2012)

3. Beckwith, L., Cunha, J., Fernandes, J.P., Saraiva, J.: End-users productivity in
model-based spreadsheets: An empirical study. In: IS-EUD’11. pp. 282–288. LNCS,
Springer Berlin Heidelberg (2011)

4. Belo, O., Cunha, J., Fernandes, J.P., Mendes, J., Pereira, R., Saraiva, J.:
Querysheet: A bidirectional query environment for model-driven spreadsheets. In:
VL/HCC. pp. 199–200 (2013)

5. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from
spreadsheets. In: Proceedings of the 2010 IEEE Symposium on Visual Languages
and Human-Centric Computing. VLHCC ’10, IEEE Computer Society (2010)

6. Cunha, J., Fernandes, J.P., Mendes, J., Pacheco, H., Saraiva, J.: Bidirectional
transformation of model-driven spreadsheets. In: Theory and Practice of Model
Transformations. LNCS, vol. 7307, pp. 105–120. Springer (2012)

7. Cunha, J., Fernandes, J.P., Mendes, J., Hugo Ribeiro, J.S.: Towards a Catalog
of Spreadsheet Smells. In: The 12th International Conference on Computational
Science and Its Applications. ICCSA’12, vol. 7336, pp. 202–216. LNCS (2012)

8. Cunha, J., Fernandes, J.P., Mendes, J., Martins, P., Saraiva, J.: Smellsheet de-
tective: A tool for detecting bad smells in spreadsheets. In: Proceedings of the
2012 IEEE Symposium on Visual Languages and Human-Centric Computing. pp.
243–244. VLHCC ’12, IEEE Computer Society, Washington, DC, USA (2012)

9. Cunha, J., Fernandes, J.P., Mendes, J., Pereira, R., Saraiva, J.: Querying model-
driven spreadsheets. In: 2013 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). pp. 83–86 (2013)

10. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Embedding and evolution of
spreadsheet models in spreadsheet systems. In: 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing. pp. 186–201. VLHCC ’11 (2011)

11. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: A bidirectional model-driven
spreadsheet environment. In: 34rd International Conference on Software Engineer-
ing. pp. 1443–1444. ICSE ’12 (June 2012)

12. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Extension and implementation
of classsheet models. In: 2012 IEEE Symposium on Visual Languages and Human-
Centric Computing. pp. 19–22. VLHCC ’12 (2012)

13. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: MDSheet: A Framework for
Model-driven Spreadsheet Engineering. In: Proceedings of the 34rd International
Conference on Software Engineering. pp. 1412–1415. ICSE ’12, ACM (2012)

14. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Towards an evaluation of bidi-
rectional model-driven spreadsheets. In: User evaluation for Software Engineering
Researchers. pp. 25–28. USER’ 12, ACM Digital Library (2012)

15. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Complexity Metrics for Class-
sheet Models. In: ICCSA (2). LNCS, vol. 7972, pp. 459–474. Springer (2013)

16. Cunha, J., Fernandes, J.P., Peixoto, C., Saraiva, J.: A quality model for spread-
sheets. In: 8th Int. Conf. on the Quality of Information and Communications Tech-
nology, Quality in ICT Evolution Track. pp. 231–236. QUATIC ’12 (2012)

17. Cunha, J., Fernandes, J.P., Pereira, R., Saraiva, J.: Graphical querying of model-
driven spreadsheets. In: HCI’14. LNCS, Springer (2014), (to appear)

18. Cunha, J., Fernandes, J.P., Saraiva, J.: From Relational ClassSheets to
UML+OCL. In: Proceedings of the Software Engineering Track at the 27th Annual
ACM Symposium On Applied Computing. pp. 1151–1158. SAC ’12, ACM (2012)

19. Cunha, J., Saraiva, J., Visser, J.: Discovery-based edit assistance for spreadsheets.
In: 2009 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). pp. 233–237 (2009)

20. Cunha, J., Saraiva, J., Visser, J.: From spreadsheets to relational databases and
back. In: Proceedings of the 2009 ACM SIGPLAN workshop on Partial evaluation
and program manipulation. pp. 179–188. PEPM ’09, ACM (2009)

21. Cunha, J., Saraiva, J., Visser, J.: Model-based programming environments for
spreadsheets. In: Programming Languages, LNCS, vol. 7554, pp. 117–133. Springer
(2012)

22. Cunha, J., Visser, J., Alves, T., Saraiva, J.: Type-safe evolution of spreadsheets.
In: Giannakopoulou, D., Orejas, F. (eds.) Fundamental Approaches to Software
Engineering. Lecture Notes in Computer Science, vol. 6603. Springer (2011)

23. Engels, G., Erwig, M.: ClassSheets: automatic generation of spreadsheet applica-
tions from object-oriented specifications. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. ACM (2005)

24. Erwig, M.: Software Engineering for Spreadsheets. IEEE Software 29(5) (2009)
25. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley

(Aug 1999)
26. Hermans, F., Dig, D.: Bumblebee: A transformation environment for spreadsheet

formulas. Tech. rep., http://dx.doi.org/10.6084/m9.figshare.813347 (2013)
27. Hermans, F., Pinzger, M., van Deursen, A.: Detecting and visualizing inter-

worksheet smells in spreadsheets. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.)
ICSE. pp. 441–451. IEEE (2012)

28. Hermans, F., Pinzger, M., Deursen, A.: Detecting and refactoring code smells in
spreadsheet formulas. Empirical Software Engineering pp. 1–27 (2014)

29. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 2(4) (1976)
30. Mitchell, N., Runciman, C.: Uniform boilerplate and list processing. In: ACM SIG-

PLAN Workshop on Haskell Workshop. pp. 49–60. Haskell ’07, ACM (2007)
31. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Comput-

ing. MIT Press, Cambridge, MA, USA, 1st edn. (1993)
32. Panko, R.: Facing the problem of spreadsheet errors. Decision Line, 37(5) (2006)
33. Panko, R.: Spreadsheet errors: What we know. what we think we can do. Proceed-

ings of the 2000 European Spreadsheet Risks Interest Group (EuSpRIG) (2000)
34. Pereira, R.: Querying for Model-Driven Spreadsheets. Master’s thesis, University

of Minho (2013)
35. Peyton Jones, S.: Haskell 98: Language and libraries. Journal of Functional Pro-

gramming 13(1), 1–255 (2003)
36. Powell, S.G., Baker, K.R., Lawson, B.: A critical review of the literature on spread-

sheet errors. Decision Support Systems 46(1), 128–138 (2008)
37. Rajalingham, K., Chadwick, D.R., Knight, B.: Classification of spreadsheet er-

rors. In: Proceedings of the 2001 European Spreadsheet Risks Interest Group (Eu-
SpRIG). Amsterdam (2001)

